Supramolecular templates for nanoflake-metal surfaces.

A sustainable method for the fabrication of metallic surfaces with flower-like fractal morphology was developed by using a three-dimensional supramolecular assembly as a template. Modifying Au nanoflakes with self-assembled monolayers or polymers allows the surface wettability to be adjusted from superhydrophobic to superhydrophilic (see figure). Furthermore, Au nanoflakes present excellent substrates for surface-enhanced Raman spectroscopy (SERS).

[1]  Chad A Mirkin,et al.  Rationally designed nanostructures for surface-enhanced Raman spectroscopy. , 2008, Chemical Society reviews.

[2]  H. Möhwald,et al.  Electron transport and electrochemistry of mesomorphic fullerenes with long-range ordered lamellae. , 2008, Journal of the American Chemical Society.

[3]  S. Shinkai,et al.  Post-polymerization of preorganized assemblies for creating shape-controlled functional materials. , 2007, Chemical Society reviews.

[4]  M. Delville,et al.  Individualized silica nanohelices and nanotubes: tuning inorganic nanostructures using lipidic self-assemblies. , 2008, Nano letters.

[5]  V. Palermo,et al.  Molecular self-assembly across multiple length scales. , 2007, Angewandte Chemie.

[6]  Hua-Zhong Yu,et al.  Surface-Enhanced Raman Scattering (SERS) from Azobenzene Self-Assembled “Sandwiches” , 1999 .

[7]  S. Shinkai,et al.  Highly enantioselective synthesis of organic compound using right- and left-handed helical silica , 2003 .

[8]  Sol M Gruner,et al.  Ordered Mesoporous Materials from Metal Nanoparticle–Block Copolymer Self-Assembly , 2008, Science.

[9]  B. L. Knutson,et al.  Unusual dependence of particle architecture on surfactant concentration in partially fluorinated decylpyridinium templated silica. , 2005, The journal of physical chemistry. B.

[10]  David Reinhoudt,et al.  What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. , 2007, Chemical Society reviews.

[11]  K. Miyazawa,et al.  C_u60 fullerene tubes as removable templates , 2006 .

[12]  K. Geckeler,et al.  Hollow porous carbon nanospheres with large surface area and stability, assembled from oxidized fullerenes , 2005 .

[13]  S. Dong,et al.  Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition , 2007 .

[14]  K. Geckeler,et al.  R&D News , 2002, Outlooks on Pest Management.

[15]  Bernd M. Smarsly,et al.  Ionische Flüssigkeiten für die Synthese funktioneller Nanopartikel und anderer anorganischer Nanostrukturen , 2004 .

[16]  A. Eychmüller,et al.  Ordered macroporous bimetallic nanostructures: design, characterization, and applications. , 2008, Accounts of chemical research.

[17]  Lei Jiang,et al.  Bioinspired surfaces with special wettability. , 2005, Accounts of chemical research.

[18]  B. Keita,et al.  Supramolecular self-assembly of amphiphiles on carbon nanotubes: a versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis. , 2008, Journal of the American Chemical Society.

[19]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[20]  J. Hafner,et al.  Shape-dependent plasmon resonances of gold nanoparticles , 2008 .

[21]  K. Ariga,et al.  Nanocarbon Superhydrophobic Surfaces created from Fullerene‐Based Hierarchical Supramolecular Assemblies , 2008 .

[22]  C. Rovira,et al.  Self-assembled monolayers of electroactive polychlorotriphenylmethyl radicals on Au(111). , 2008, Journal of the American Chemical Society.

[23]  Anand Gole,et al.  Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. , 2005, Analytical chemistry.

[24]  C. Domingo,et al.  Surface-Enhanced Vibrational Study (SEIR and SERS) of Dithiocarbamate Pesticides on Gold Films. , 2001, Langmuir : the ACS journal of surfaces and colloids.

[25]  Katsuhiko Ariga,et al.  Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. , 2007, Small.

[26]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[27]  Yong Zhang,et al.  Porous Polymer Films with Size-Tunable Surface Pores , 2007 .

[28]  S. Bader,et al.  Magnetism and surface structure of atomically controlled ultrathin metal films. , 2007 .

[29]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[30]  Toshimi Shimizu,et al.  Supramolecular nanotube architectures based on amphiphilic molecules. , 2005, Chemical reviews.

[31]  M. Antonietti,et al.  Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. , 2004, Angewandte Chemie.

[32]  Dong Qin,et al.  Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. , 2008, Nano letters.

[33]  T. Tsuruoka,et al.  Perfectly straight nanowires of fullerenes bearing long alkyl chains on graphite. , 2006, Journal of the American Chemical Society.

[34]  Tomohiro Onda,et al.  Super Water-Repellent Surfaces Resulting from Fractal Structure , 1996 .

[35]  A. Ajayaghosh,et al.  Bioinspired superhydrophobic coatings of carbon nanotubes and linear pi systems based on the "bottom-up" self-assembly approach. , 2008, Angewandte Chemie.

[36]  Jean-Marie Lehn,et al.  Cryptates: inclusion complexes of macropolycyclic receptor molecules , 1978 .

[37]  K. Ariga,et al.  Hierarchical supramolecular fullerene architectures with controlled dimensionality. , 2005, Chemical communications.

[38]  Shengrong Guo,et al.  Concentration controlled multilevel self-assembly of 3-armed poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymers investigated by AFM , 2008 .

[39]  S. Shinkai,et al.  Sol–gel transcription of silica-based hybrid nanostructures using poly(N-vinylpyrrolidone)-coated [60]fullerene, single-walled carbon nanotube and block copolymer templates , 2004 .

[40]  Xinsheng Peng,et al.  Surfactant-assisted fabrication of free-standing inorganic sheets covering an array of micrometre-sized holes. , 2007, Nature materials.

[41]  T. Fukushima,et al.  Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers , 2006, Science.

[42]  Matthew R. Linford,et al.  Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon , 1995 .

[43]  Paolo Samorì,et al.  Molekulare Selbstorganisation über mehrere Längenskalen , 2007 .

[44]  K. Ariga,et al.  Fine-tuning supramolecular assemblies of fullerenes bearing long alkyl chains , 2008 .

[45]  T. Ohsuna,et al.  Synthesis and characterization of chiral mesoporous silica , 2004, Nature.

[46]  Meijer,et al.  Rotational ordering transition in single-crystal C60 studied by Raman spectroscopy. , 1992, Physical review letters.

[47]  G. Whitesides,et al.  Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold , 1989 .

[48]  L. Núñez-Vergara,et al.  Cyclic Voltammetric and Scanning Electrochemical Microscopic Study of Thiolated β-Cyclodextrin Adsorbed on a Gold Electrode , 2003 .

[49]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[50]  K. Uosaki,et al.  Resonance hyper-Raman scattering of fullerene C60 microcrystals. , 2008, The journal of physical chemistry. A.

[51]  B. Ren,et al.  New strategies for surface-enhanced Raman scattering at transition-metal interfaces: Thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon , 1999 .

[52]  A. Ajayaghosh,et al.  Pi-organogels of self-assembled p-phenylenevinylenes: soft materials with distinct size, shape, and functions. , 2007, Accounts of chemical research.

[53]  Xi Zhang,et al.  Superhydrophobic surfaces: from structural control to functional application , 2008 .