A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework
暂无分享,去创建一个
[1] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[2] Raphaël Danchin,et al. Existence of solutions for compressible fluid models of Korteweg type , 2001 .
[3] R. Danchin. LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .
[4] R. Danchin. UNIFORM ESTIMATES FOR TRANSPORT-DIFFUSION EQUATIONS , 2007 .
[5] Takaaki Nishida,et al. The initial value problem for the equations of motion of viscous and heat-conductive gases , 1980 .
[6] Yoshikazu Giga,et al. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .
[7] Pierre Germain,et al. Weak–Strong Uniqueness for the Isentropic Compressible Navier–Stokes System , 2008, 0807.2797.
[8] Raphaël Danchin,et al. On the uniqueness in critical spaces for compressible Navier-Stokes equations , 2005 .
[9] J. Chemin,et al. Théorèmes d’unicité pour le système de navier-stokes tridimensionnel , 1999 .
[10] Hiroshi Fujita,et al. On the Navier-Stokes initial value problem. I , 1964 .
[11] J. Nash,et al. Le problème de Cauchy pour les équations différentielles d'un fluide général , 1962 .
[12] Takayuki Kobayashi,et al. Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations , 2002 .
[13] Isabelle Gallagher,et al. Global regularity for some classes of large solutions to the Navier-Stokes equations , 2008, 0807.1265.
[14] Marco Cannone,et al. A generalization of a theorem by Kato on Navier-Stokes equations , 1997 .
[15] F. Planchon. Asymptotic behavior of global solutions to the Navier-Stokes equations in R3 , 1998 .
[16] T. Hmidi. Régularité höldérienne des poches de tourbillon visqueuses , 2004 .
[17] Raphaël Danchin,et al. Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .
[18] P. Mucha. The Cauchy problem for the compressible Navier-Stokes equations in the L p -framework , 2003 .
[19] R. Danchin. Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density , 2007 .
[20] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[21] Takashi Kato,et al. StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .
[22] Didier Bresch,et al. On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids , 2007 .
[23] M. Vishik,et al. Hydrodynamics in Besov Spaces , 1998 .