A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework

The present paper is dedicated to the global well-posedness issue for the barotropic compressible Navier–Stokes system in the whole space $${\mathbb{R}^d}$$ with d ≧ 2. We aim at extending the work by Danchin (Inventiones Mathematicae 141(3):579–614, 2000) to a critical framework which is not related to the energy space. For small perturbations of a stable equilibrium state in the sense of suitable Lp-type Besov norms, we establish the global existence. As a consequence, like for incompressible flows, one may exhibit a class of large highly oscillating initial velocity fields for which global existence and uniqueness holds true. In passing, we obtain new estimates for the linearized and the paralinearized systems which may be of interest for future works on compressible flows.

[1]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[2]  Raphaël Danchin,et al.  Existence of solutions for compressible fluid models of Korteweg type , 2001 .

[3]  R. Danchin LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .

[4]  R. Danchin UNIFORM ESTIMATES FOR TRANSPORT-DIFFUSION EQUATIONS , 2007 .

[5]  Takaaki Nishida,et al.  The initial value problem for the equations of motion of viscous and heat-conductive gases , 1980 .

[6]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[7]  Pierre Germain,et al.  Weak–Strong Uniqueness for the Isentropic Compressible Navier–Stokes System , 2008, 0807.2797.

[8]  Raphaël Danchin,et al.  On the uniqueness in critical spaces for compressible Navier-Stokes equations , 2005 .

[9]  J. Chemin,et al.  Théorèmes d’unicité pour le système de navier-stokes tridimensionnel , 1999 .

[10]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[11]  J. Nash,et al.  Le problème de Cauchy pour les équations différentielles d'un fluide général , 1962 .

[12]  Takayuki Kobayashi,et al.  Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations , 2002 .

[13]  Isabelle Gallagher,et al.  Global regularity for some classes of large solutions to the Navier-Stokes equations , 2008, 0807.1265.

[14]  Marco Cannone,et al.  A generalization of a theorem by Kato on Navier-Stokes equations , 1997 .

[15]  F. Planchon Asymptotic behavior of global solutions to the Navier-Stokes equations in R3 , 1998 .

[16]  T. Hmidi Régularité höldérienne des poches de tourbillon visqueuses , 2004 .

[17]  Raphaël Danchin,et al.  Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .

[18]  P. Mucha The Cauchy problem for the compressible Navier-Stokes equations in the L p -framework , 2003 .

[19]  R. Danchin Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density , 2007 .

[20]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[21]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[22]  Didier Bresch,et al.  On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids , 2007 .

[23]  M. Vishik,et al.  Hydrodynamics in Besov Spaces , 1998 .