Subwavelength Si nanowire arrays for self-cleaning antireflection coatings

Galvanic wet etching was adopted to fabricate Si nanowire arrays (NWAs) as a near-perfect subwavelength structure (SWS), which is an optically effective gradient-index antireflection (AR) surface and also exhibits super-hydrophobicity with an extremely high water contact angle (159°). Fresnel reflection and diffuse reflection over the broad spectrum can be eliminated by a Si NWA AR coating. Moreover, Si NWA SWSs show polarization-independent and omnidirectional AR properties. The wavelength-averaged specular and diffuse reflectance of Si NWA SWSs are as low as 0.06% and 2.51%, respectively. The effects of the surface profile of this biomimetic SWS on the AR and super-hydrophobic properties were investigated systematically.

[1]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[2]  Hongming Fan,et al.  Simple lithographic approach for subwavelength structure antireflection , 2007 .

[3]  V. Lehmann The Physics of Macropore Formation in Low Doped n‐Type Silicon , 1993 .

[4]  T. Yen,et al.  Morphological Control of Single‐Crystalline Silicon Nanowire Arrays near Room Temperature , 2008 .

[5]  Zhong Lin Wang,et al.  Controlled replication of butterfly wings for achieving tunable photonic properties. , 2006, Nano letters.

[6]  Malcolm L. H. Green,et al.  Observation of van der Waals Driven Self‐Assembly of MoSI Nanowires into a Low‐Symmetry Structure Using Aberration‐Corrected Electron Microscopy , 2007 .

[7]  Lifeng Chi,et al.  Biomimetic antireflective Si nanopillar arrays. , 2008, Small.

[8]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[9]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[10]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[11]  Radislav A. Potyrailo,et al.  Morpho butterfly wing scales demonstrate highly selective vapour response , 2007 .

[12]  S. D. Collins,et al.  Porous silicon formation mechanisms , 1992 .

[13]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[14]  Willem L. Vos,et al.  Broad‐band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods , 2009 .

[15]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[16]  Xi-Qiao Feng,et al.  Towards Understanding Why a Superhydrophobic Coating Is Needed by Water Striders , 2007 .

[17]  Sadao Adachi,et al.  Optical dispersion relations for Si and Ge , 1989 .

[18]  Harish Manohara,et al.  A novel silicon nanotips antireflection surface for the micro Sun sensor. , 2005, Nano letters.

[19]  Yong Ding,et al.  Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry , 2008, Nanotechnology.

[20]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[21]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[22]  Akira Fujishima,et al.  Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate , 1999 .

[23]  C. K. Lee,et al.  Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects , 2007 .

[24]  Min-Yi Shih,et al.  Strong broadband optical absorption in silicon nanowire films , 2007 .

[25]  E. Fred Schubert,et al.  Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics , 2008 .

[26]  Zhong Lin Wang,et al.  Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes , 2008, Nanotechnology.

[27]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[28]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[29]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[30]  Orlin D. Velev,et al.  Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells , 2007 .

[31]  Uwe Thiele,et al.  Wetting of textured surfaces , 2002 .

[32]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[33]  V. M. Donnelly,et al.  Cl2 plasma etching of Si(100): Damaged surface layer studied by in situ spectroscopic ellipsometry , 1997 .

[34]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[35]  D. Stavenga,et al.  Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[36]  Stephan Herminghaus,et al.  Roughness-induced non-wetting , 2000 .

[37]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[38]  Otto L Muskens,et al.  Design of light scattering in nanowire materials for photovoltaic applications. , 2008, Nano letters.

[39]  Douglas S. Hobbs,et al.  Update on the development of high performance anti-reflecting surface relief micro-structures , 2007, SPIE Defense + Commercial Sensing.