Micro-end-milling—III. Wear estimation and tool breakage detection using acoustic emission signals

Acoustic Emission (AE) signals have been used to monitor tool condition in conventional machining operations. In this paper, new procedures are proposed to detect tool breakage and to estimate tool condition (wear) by using AE. The proposed procedure filters the AE signals with a narrow band-width, band-pass filter and obtains the upper envelope of the harmonic signal by using analog hardware. The envelope is digitized, encoded and classified to monitor the machining operation. The characteristics of the envelope of the AE were evaluated to detect tool breakage. The encoded parameters of the envelope of the AE signals were classified by using the Adaptive Resonance Theory (ART2) and Abductory Induction Mechanism (AIM) to estimate wear. The proposed tool breakage and wear estimation techniques were tested on the experimental data. Both methods were found to be acceptable. However, the reliability of the tool breakage detection system was higher than the wear estimation method.