New Convex Relaxations for the Maximum Cut and VLSI Layout Problems

It is well known that many of the optimization problems which arise in applications are “hard”, which usually means that they are NP-hard. Hence much research has been devoted to finding “good” relaxations for these hard problems. Usually a “good” relaxation is one which can be solved (either exactly or within a prescribed numerical tolerance) in polynomial-time. Nesterov and Nemirovskii showed that by this criterion, many convex optimization problems are good relaxations. This thesis presents new convex relaxations for two such hard problems, namely the Maximum-Cut (Max-Cut) problem and the VLSI (Very Large Scale Integration of electronic circuits) layout problem. We derive and study the properties of two new strengthened semidefinite programming relaxations for the Max-Cut problem. Our theoretical results hold for every instance of Max-Cut; in particular, we make no assumptions about the edge weights. The first relaxation provides a strengthening of the well-known GoemansWilliamson relaxation, and the second relaxation is a further tightening of the first. We prove that the tighter relaxation automatically enforces the well-known triangle inequalities, and in fact is stronger than the simple addition of these inequalities to the Goemans-Williamson relaxation. We further prove that the tighter relaxation fully characterizes some low dimensional faces of the cut polytope via the rank of its feasible matrices. We also address some practical issues arising in the solution of these relaxations and present numerical results showing the remarkably good bounds computed by the tighter relaxation. For the VLSI layout problem, we derive a new relaxation by extending the “tar-

[1]  C. Helmberg An Interior Point Method for Semidefinite Programming and Max-Cut Bounds , 1994 .

[2]  M. Goemans Semidefinite programming and combinatorial optimization , 1998 .

[3]  B. Mohar,et al.  Eigenvalues in Combinatorial Optimization , 1993 .

[4]  Henry Wolkowicz,et al.  Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..

[5]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[6]  Michael C. Ferris,et al.  NEOS and Condor: solving optimization problems over the Internet , 2000, TOMS.

[7]  Yinyu Ye,et al.  Solving Sparse Semidefinite Programs Using the Dual Scaling Algorithm with an Iterative Solver , 2000 .

[8]  M. Laurent A tour d’horizon on positive semidefinite and Euclidean distance matrix completion problems , 1998 .

[9]  Monique Laurent,et al.  Tighter Linear and Semidefinite Relaxations for Max-Cut Based on the Lov[a-acute]sz--Schrijver Lift-and-Project Procedure , 2002, SIAM J. Optim..

[10]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[11]  Christoph Helmberg,et al.  Bundle Methods to Minimize the Maximum Eigenvalue Function , 2000 .

[12]  Franz Rendl,et al.  Combining Semidefinite and Polyhedral Relaxations for Integer Programs , 1995, IPCO.

[13]  Brian Borchers CSDP 2.3 user's guide , 1999 .

[14]  Michael Jünger,et al.  Relaxations of the Max Cut Problem and Computation of Spin Glass Ground States , 1998 .

[15]  Franz Rendl,et al.  Connections between semidefinite relaxations of the max-cut and stable set problems , 1997, Math. Program..

[16]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  V. Yakubovich Nonconvex optimization problem: the infinite-horizon linear-quadratic control problem with quadratic constraints , 1992 .

[19]  Ya-Xiang Yuan,et al.  Strong duality for a trust-region type relaxation of the quadratic assignment problem , 1999 .

[20]  Renato D. C. Monteiro,et al.  Solving Semidefinite Programs via Nonlinear Programming, Part II: Interior Point Methods for a Subclass of SDPs , 1999 .

[21]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[22]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[23]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[26]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[27]  Charles Delorme,et al.  Combinatorial Properties and the Complexity of a Max-cut Approximation , 1993, Eur. J. Comb..

[28]  Kazuo Murota,et al.  Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..

[29]  Egon Balas A modified lift-and-project procedure , 1997, Math. Program..

[30]  Levent Tunçel,et al.  On the Slater condition for the SDP relaxations of nonconvex sets , 2001, Oper. Res. Lett..

[31]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[32]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[33]  R. C. Monteiro,et al.  Interior-Point Algorithms for Semidefinite Programming Based on A Nonlinear Programming Formulation , 1999 .

[34]  K. Kortanek,et al.  New purification algorithms for linear programming , 1988 .

[35]  Christoph Helmberg,et al.  A spectral bundle method with bounds , 2002, Math. Program..

[36]  Endre Boros,et al.  Cut-Polytopes, Boolean Quadric Polytopes and Nonnegative Quadratic Pseudo-Boolean Functions , 1993, Math. Oper. Res..

[37]  R. Monteiro,et al.  Solving Semide nite Programs via Nonlinear Programming , 1999 .

[38]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[39]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[40]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[41]  C. Helmberg SBmethod - A C++ Implementation of the Spectral Bundle Method: Manual to Version 1.1 , 2000 .

[42]  Y. Ye,et al.  Semidefinite programming relaxations of nonconvex quadratic optimization , 2000 .

[43]  C. Lemaréchal,et al.  Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization , 1999 .

[44]  Caterina De Simone A note on the Boolean quadric polytope , 1996, Oper. Res. Lett..

[45]  Renato D. C. Monteiro,et al.  An Efficient Algorithm for Solving the MAXCUT SDP Relaxation , 1998 .

[46]  M. Er Quadratic optimization problems in robust beamforming , 1990 .

[47]  Masakazu Kojima,et al.  Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..

[48]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[49]  Monique Laurent,et al.  On the Facial Structure of the Set of Correlation Matrices , 1996, SIAM J. Matrix Anal. Appl..

[50]  Franz Rendl,et al.  A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..

[51]  A. J. Quist,et al.  Copositive realxation for genera quadratic programming , 1998 .

[52]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[53]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[54]  A. J. Quist,et al.  Copositive relaxation for general quadratic programming. , 1998 .

[55]  Caterina De Simone,et al.  The cut polytope and the Boolean quadric polytope , 1990, Discret. Math..

[56]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[57]  David A. Kendrick,et al.  GAMS : a user's guide, Release 2.25 , 1992 .

[58]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[59]  Egon Balas,et al.  Solving mixed 0-1programs by a lift-and-project method , 1993, SODA '93.

[60]  Francisco Barahona,et al.  On cuts and matchings in planar graphs , 1993, Math. Program..

[61]  M. Overton,et al.  SDPPACK User''s Guide -- Version 0.9 Beta for Matlab 5.0. , 1997 .

[62]  S. Poljak,et al.  On a positive semidefinite relaxation of the cut polytope , 1995 .

[63]  Panos M. Pardalos,et al.  Quadratic Assignment and Related Problems , 1994 .

[64]  O. SIAMJ. CONES OF MATRICES AND SUCCESSIVE CONVEX RELAXATIONS OF NONCONVEX SETS , 2000 .

[65]  R. Monteiro,et al.  Solving SemideÞnite Programs via Nonlinear Programming Part I: Transformations and Derivatives É , 1999 .

[66]  Franz Rendl,et al.  Nonpolyhedral Relaxations of Graph-Bisection Problems , 1995, SIAM J. Optim..

[67]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[68]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[69]  B. Borchers A C library for semidefinite programming , 1999 .

[70]  Endre Boros,et al.  The max-cut problem and quadratic 0–1 optimization; polyhedral aspects, relaxations and bounds , 1991, Ann. Oper. Res..

[71]  A. Lewis Extreme Points and Purification Algorithms in General Linear Programming , 1985 .

[72]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[73]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[74]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[75]  Katsuki Fujisawa,et al.  Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..

[76]  Henry Wolkowicz,et al.  On Lagrangian Relaxation of Quadratic Matrix Constraints , 2000, SIAM J. Matrix Anal. Appl..

[77]  Zvi Drezner,et al.  DISCON: A New Method for the Layout Problem , 1980, Oper. Res..

[78]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[79]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[80]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[81]  Yinyu Ye,et al.  Approximating quadratic programming with bound and quadratic constraints , 1999, Math. Program..

[82]  C. Richard Johnson,et al.  Matrix Completion Problems: A Survey , 1990 .

[83]  Y. Crama,et al.  Upper-bounds for quadratic 0-1 maximization , 1990 .

[84]  Qing Zhao Semidefinite programming for assignment and partitioning problems , 1998 .

[85]  Henry Wolkowicz,et al.  An Interior-Point Method for Approximate Positive Semidefinite Completions , 1998, Comput. Optim. Appl..

[86]  Charles Delorme,et al.  Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..

[87]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[88]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[89]  Henry Wolkowicz,et al.  Strengthened semidefinite relaxations via a second lifting for the Max-Cut problem , 2002, Discret. Appl. Math..

[90]  D. Camp,et al.  A nonlinear optimization approach for solving facility layout problems , 1992 .

[91]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.