New Convex Relaxations for the Maximum Cut and VLSI Layout Problems
暂无分享,去创建一个
[1] C. Helmberg. An Interior Point Method for Semidefinite Programming and Max-Cut Bounds , 1994 .
[2] M. Goemans. Semidefinite programming and combinatorial optimization , 1998 .
[3] B. Mohar,et al. Eigenvalues in Combinatorial Optimization , 1993 .
[4] Henry Wolkowicz,et al. Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..
[5] Hanif D. Sherali,et al. A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..
[6] Michael C. Ferris,et al. NEOS and Condor: solving optimization problems over the Internet , 2000, TOMS.
[7] Yinyu Ye,et al. Solving Sparse Semidefinite Programs Using the Dual Scaling Algorithm with an Iterative Solver , 2000 .
[8] M. Laurent. A tour d’horizon on positive semidefinite and Euclidean distance matrix completion problems , 1998 .
[9] Monique Laurent,et al. Tighter Linear and Semidefinite Relaxations for Max-Cut Based on the Lov[a-acute]sz--Schrijver Lift-and-Project Procedure , 2002, SIAM J. Optim..
[10] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization , 1998 .
[11] Christoph Helmberg,et al. Bundle Methods to Minimize the Maximum Eigenvalue Function , 2000 .
[12] Franz Rendl,et al. Combining Semidefinite and Polyhedral Relaxations for Integer Programs , 1995, IPCO.
[13] Brian Borchers. CSDP 2.3 user's guide , 1999 .
[14] Michael Jünger,et al. Relaxations of the Max Cut Problem and Computation of Spin Glass Ground States , 1998 .
[15] Franz Rendl,et al. Connections between semidefinite relaxations of the max-cut and stable set problems , 1997, Math. Program..
[16] E. Ising. Beitrag zur Theorie des Ferromagnetismus , 1925 .
[17] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[18] V. Yakubovich. Nonconvex optimization problem: the infinite-horizon linear-quadratic control problem with quadratic constraints , 1992 .
[19] Ya-Xiang Yuan,et al. Strong duality for a trust-region type relaxation of the quadratic assignment problem , 1999 .
[20] Renato D. C. Monteiro,et al. Solving Semidefinite Programs via Nonlinear Programming, Part II: Interior Point Methods for a Subclass of SDPs , 1999 .
[21] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[22] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[23] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .
[24] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[25] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[26] Thomas Lengauer,et al. Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.
[27] Charles Delorme,et al. Combinatorial Properties and the Complexity of a Max-cut Approximation , 1993, Eur. J. Comb..
[28] Kazuo Murota,et al. Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..
[29] Egon Balas. A modified lift-and-project procedure , 1997, Math. Program..
[30] Levent Tunçel,et al. On the Slater condition for the SDP relaxations of nonconvex sets , 2001, Oper. Res. Lett..
[31] Michael A. Saunders,et al. Large-scale linearly constrained optimization , 1978, Math. Program..
[32] B. Borchers. CSDP, A C library for semidefinite programming , 1999 .
[33] R. C. Monteiro,et al. Interior-Point Algorithms for Semidefinite Programming Based on A Nonlinear Programming Formulation , 1999 .
[34] K. Kortanek,et al. New purification algorithms for linear programming , 1988 .
[35] Christoph Helmberg,et al. A spectral bundle method with bounds , 2002, Math. Program..
[36] Endre Boros,et al. Cut-Polytopes, Boolean Quadric Polytopes and Nonnegative Quadratic Pseudo-Boolean Functions , 1993, Math. Oper. Res..
[37] R. Monteiro,et al. Solving Semide nite Programs via Nonlinear Programming , 1999 .
[38] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[39] R. Saigal,et al. Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .
[40] Egon Balas,et al. A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..
[41] C. Helmberg. SBmethod - A C++ Implementation of the Spectral Bundle Method: Manual to Version 1.1 , 2000 .
[42] Y. Ye,et al. Semidefinite programming relaxations of nonconvex quadratic optimization , 2000 .
[43] C. Lemaréchal,et al. Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization , 1999 .
[44] Caterina De Simone. A note on the Boolean quadric polytope , 1996, Oper. Res. Lett..
[45] Renato D. C. Monteiro,et al. An Efficient Algorithm for Solving the MAXCUT SDP Relaxation , 1998 .
[46] M. Er. Quadratic optimization problems in robust beamforming , 1990 .
[47] Masakazu Kojima,et al. Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..
[48] Ali Ridha Mahjoub,et al. On the cut polytope , 1986, Math. Program..
[49] Monique Laurent,et al. On the Facial Structure of the Set of Correlation Matrices , 1996, SIAM J. Matrix Anal. Appl..
[50] Franz Rendl,et al. A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..
[51] A. J. Quist,et al. Copositive realxation for genera quadratic programming , 1998 .
[52] Xiong Zhang,et al. Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..
[53] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[54] A. J. Quist,et al. Copositive relaxation for general quadratic programming. , 1998 .
[55] Caterina De Simone,et al. The cut polytope and the Boolean quadric polytope , 1990, Discret. Math..
[56] Farid Alizadeh,et al. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..
[57] David A. Kendrick,et al. GAMS : a user's guide, Release 2.25 , 1992 .
[58] Hanif D. Sherali,et al. A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..
[59] Egon Balas,et al. Solving mixed 0-1programs by a lift-and-project method , 1993, SODA '93.
[60] Francisco Barahona,et al. On cuts and matchings in planar graphs , 1993, Math. Program..
[61] M. Overton,et al. SDPPACK User''s Guide -- Version 0.9 Beta for Matlab 5.0. , 1997 .
[62] S. Poljak,et al. On a positive semidefinite relaxation of the cut polytope , 1995 .
[63] Panos M. Pardalos,et al. Quadratic Assignment and Related Problems , 1994 .
[64] O. SIAMJ.. CONES OF MATRICES AND SUCCESSIVE CONVEX RELAXATIONS OF NONCONVEX SETS , 2000 .
[65] R. Monteiro,et al. Solving SemideÞnite Programs via Nonlinear Programming Part I: Transformations and Derivatives É , 1999 .
[66] Franz Rendl,et al. Nonpolyhedral Relaxations of Graph-Bisection Problems , 1995, SIAM J. Optim..
[67] Michel X. Goemans,et al. Semideenite Programming in Combinatorial Optimization , 1999 .
[68] Johan Håstad,et al. Some optimal inapproximability results , 2001, JACM.
[69] B. Borchers. A C library for semidefinite programming , 1999 .
[70] Endre Boros,et al. The max-cut problem and quadratic 0–1 optimization; polyhedral aspects, relaxations and bounds , 1991, Ann. Oper. Res..
[71] A. Lewis. Extreme Points and Purification Algorithms in General Linear Programming , 1985 .
[72] Warren P. Adams,et al. A hierarchy of relaxation between the continuous and convex hull representations , 1990 .
[73] Franz Rendl,et al. Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..
[74] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[75] Katsuki Fujisawa,et al. Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..
[76] Henry Wolkowicz,et al. On Lagrangian Relaxation of Quadratic Matrix Constraints , 2000, SIAM J. Matrix Anal. Appl..
[77] Zvi Drezner,et al. DISCON: A New Method for the Layout Problem , 1980, Oper. Res..
[78] Martin Grötschel,et al. An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..
[79] Charles R. Johnson,et al. Positive definite completions of partial Hermitian matrices , 1984 .
[80] William J. Cook,et al. Combinatorial optimization , 1997 .
[81] Yinyu Ye,et al. Approximating quadratic programming with bound and quadratic constraints , 1999, Math. Program..
[82] C. Richard Johnson,et al. Matrix Completion Problems: A Survey , 1990 .
[83] Y. Crama,et al. Upper-bounds for quadratic 0-1 maximization , 1990 .
[84] Qing Zhao. Semidefinite programming for assignment and partitioning problems , 1998 .
[85] Henry Wolkowicz,et al. An Interior-Point Method for Approximate Positive Semidefinite Completions , 1998, Comput. Optim. Appl..
[86] Charles Delorme,et al. Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..
[87] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[88] Pierre Hansen,et al. Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..
[89] Henry Wolkowicz,et al. Strengthened semidefinite relaxations via a second lifting for the Max-Cut problem , 2002, Discret. Appl. Math..
[90] D. Camp,et al. A nonlinear optimization approach for solving facility layout problems , 1992 .
[91] M. R. Rao,et al. Combinatorial Optimization , 1992, NATO ASI Series.