Approximation order from stability for nonlinear subdivision schemes

This paper proves approximation order properties of various nonlinear subdivision schemes. Building on some recent results on the stability of nonlinear multiscale transformations, we are able to give very short and concise proofs. In particular we point out an interesting connection between stability properties and approximation order for nonlinear subdivision schemes.

[1]  Philipp Grohs Stability of Manifold-Valued Subdivision Schemes and Multiscale Transformations , 2010 .

[2]  David L. Donoho,et al.  Nonlinear Pyramid Transforms Based on Median-Interpolation , 2000, SIAM J. Math. Anal..

[3]  G. Faber Über stetige Funktionen , 1908 .

[4]  S. Amat,et al.  Analysis of a class of non linear subdivision schemes and associated multi-resolution transforms , 2008 .

[5]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[6]  T. Yu,et al.  Approximation order equivalence properties of manifold-valued data subdivision schemes , 2012 .

[7]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[8]  Johannes Wallner,et al.  Interpolatory wavelets for manifold-valued data , 2009 .

[9]  S. Chern,et al.  Lectures on Differential Geometry , 2024, Graduate Studies in Mathematics.

[10]  S. Dubuc Interpolation through an iterative scheme , 1986 .

[11]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[12]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[13]  O. Runborg Introduction to Normal Multiresolution Approximation , 2005 .

[14]  Peter Oswald Smoothness of Nonlinear Median-Interpolation Subdivision , 2004, Adv. Comput. Math..

[15]  P. Oswald,et al.  Stability of Nonlinear Subdivision and Multiscale Transforms , 2010 .

[16]  Karine Dadourian,et al.  Schémas de subdivision, analyses multirésolutions non-linéaires. Applications , 2008 .

[17]  Gang Xie,et al.  Smoothness Equivalence Properties of General Manifold-Valued Data Subdivision Schemes , 2008, Multiscale Model. Simul..

[18]  I. Daubechies,et al.  Normal Multiresolution Approximation of Curves , 2004 .

[19]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[20]  Nira Dyn,et al.  Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..