Approximation order from stability for nonlinear subdivision schemes
暂无分享,去创建一个
[1] Philipp Grohs. Stability of Manifold-Valued Subdivision Schemes and Multiscale Transformations , 2010 .
[2] David L. Donoho,et al. Nonlinear Pyramid Transforms Based on Median-Interpolation , 2000, SIAM J. Math. Anal..
[3] G. Faber. Über stetige Funktionen , 1908 .
[4] S. Amat,et al. Analysis of a class of non linear subdivision schemes and associated multi-resolution transforms , 2008 .
[5] David L. Donoho,et al. Interpolating Wavelet Transforms , 1992 .
[6] T. Yu,et al. Approximation order equivalence properties of manifold-valued data subdivision schemes , 2012 .
[7] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[8] Johannes Wallner,et al. Interpolatory wavelets for manifold-valued data , 2009 .
[9] S. Chern,et al. Lectures on Differential Geometry , 2024, Graduate Studies in Mathematics.
[10] S. Dubuc. Interpolation through an iterative scheme , 1986 .
[11] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[12] C. Micchelli,et al. Stationary Subdivision , 1991 .
[13] O. Runborg. Introduction to Normal Multiresolution Approximation , 2005 .
[14] Peter Oswald. Smoothness of Nonlinear Median-Interpolation Subdivision , 2004, Adv. Comput. Math..
[15] P. Oswald,et al. Stability of Nonlinear Subdivision and Multiscale Transforms , 2010 .
[16] Karine Dadourian,et al. Schémas de subdivision, analyses multirésolutions non-linéaires. Applications , 2008 .
[17] Gang Xie,et al. Smoothness Equivalence Properties of General Manifold-Valued Data Subdivision Schemes , 2008, Multiscale Model. Simul..
[18] I. Daubechies,et al. Normal Multiresolution Approximation of Curves , 2004 .
[19] S. Osher,et al. Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .
[20] Nira Dyn,et al. Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..