Wild automorphisms of projective varieties, the maps which have no invariant proper subsets

Let $X$ be a projective variety and $\sigma$ a wild automorphism on $X$, i.e., whenever $\sigma(Z) = Z$ for a Zariski-closed subset $Z$ of $X$, we have $Z = X$. Then $X$ is conjectured to be an abelian variety (and proved to be so when $\dim X \le 2$) by Z. Reichstein, D. Rogalski and J. J. Zhang. This conjecture has been generally open for more than a decade. In this note, we confirm this conjecture when $\text{dim} \, X \le 3$ and $X$ is not a Calabi-Yau threefold.

[1]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[2]  Projectively simple rings , 2004, math/0401098.

[3]  T. Dinh,et al.  ON THE DYNAMICAL DEGREES OF MEROMORPHIC MAPS PRESERVING A FIBRATION , 2011, 1108.4792.

[4]  J. Wiśniewski On contractions of extremal rays of Fano manifolds. , 1991 .

[5]  K. Ueno Classification theory of algebraic varieties and compact complex spaces , 1975 .

[6]  A. Kirson Wild automorphisms of varieties with Kodaira dimension 0 , 2010 .

[7]  Dennis S. Keeler Criteria for sigma-ampleness , 1999 .

[8]  Thomas Bauer A simple proof for the existence of Zariski decompositions on surfaces , 2007, 0712.1576.

[9]  Automorphisms of hyperkähler manifolds in the view of topological entropy , 2004, math/0407476.

[10]  Shigeetj Iitaka Birational Geometry of Algebraic Varieties , 2010 .

[11]  De-Qi Zhang Automorphism groups and anti-pluricanonical curves , 2007, 0705.0476.

[12]  John Lesieutre Some constraints on positive entropy automorphisms of smooth threefolds , 2015, 1503.07834.

[13]  De-Qi Zhang Polarized endomorphisms of uniruled varieties. With an appendix by Y. Fujimoto and N. Nakayama , 2009, Compositio Mathematica.

[14]  T. Suwa On ruled surfaces of genus 1 , 1969 .

[15]  Y. Miyaoka Rational Curves on Algebraic Varieties , 1995 .

[16]  K. Oguiso,et al.  Explicit Examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy , 2013, 1306.1590.

[17]  N. Nakayama Intersection sheaves over normal schemes , 2010 .

[18]  Shigefumi Mori,et al.  Threefolds Whose Canonical Bundles Are Not Numerically Effective (Recent Topics in Algebraic Geometry) , 1980 .

[19]  Akira Fujiki,et al.  On automorphism groups of compact Kähler manifolds , 1978 .

[20]  F. Sakai The structure of normal surfaces , 1985 .

[21]  T. Dinh,et al.  Compact Kähler manifolds admitting large solvable groups of automorphisms , 2015, 1502.07060.

[22]  K. Oguiso ON ALGEBRAIC FIBER SPACE STRUCTURES ON A CALABI-YAU 3-FOLD , 1993 .

[23]  D. Lieberman Compactness of the Chow scheme: Applications to automorphisms and deformations of Kahler manifolds , 1978 .

[24]  P. Wilson,et al.  BIRATIONAL GEOMETRY OF ALGEBRAIC VARIETIES (Cambridge Tracts in Mathematics 134) By J áNOS K OLLáR and S HIGEFUMI M ORI : 254 pp., £30.00, ISBN 0 521 63277 3 (Cambridge University Press, 1998). , 2000 .

[25]  Joe W. Harris,et al.  Families of rationally connected varieties , 2001, math/0109220.

[26]  Strictly nef divisors , 2005, math/0511042.