Evolutionary membrane computing: A comprehensive survey and new results

Abstract Evolutionary membrane computing is an important research direction of membrane computing that aims to explore the complex interactions between membrane computing and evolutionary computation. These disciplines are receiving increasing attention. In this paper, an overview of the evolutionary membrane computing state-of-the-art and new results on two established topics in well defined scopes (membrane-inspired evolutionary algorithms and automated design of membrane computing models) are presented. We survey their theoretical developments and applications, sketch the differences between them, and compare the advantages and limitations.

[1]  Ning Wang,et al.  Multiobjective bio-inspired algorithm based on membrane computing , 2012, 2012 International Conference on Computer Science and Information Processing (CSIP).

[2]  Taishin Y. Nishida Membrane Algorithm with Brownian Subalgorithm and Genetic Subalgorithm , 2007, Int. J. Found. Comput. Sci..

[3]  Hitoshi Iba,et al.  New Frontier in Evolutionary Algorithms: Theory and Applications , 2011 .

[4]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[5]  Yin Xinchun,et al.  A distributed approach inspired by membrane computing for optimizing bijective S-boxes , 2008, 2008 27th Chinese Control Conference.

[6]  Gheorghe Paun,et al.  Applications of Membrane Computing (Natural Computing Series) , 2005 .

[7]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[8]  Marian Gheorghe,et al.  Diversity and convergence analysis of membrane algorithms , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[9]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[10]  John S. McCaskill,et al.  Chemical evolution among artificial proto-cells , 2000 .

[11]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[12]  Marian Gheorghe,et al.  Solving satisfiability problems with membrane algorithms , 2009, 2009 Fourth International on Conference on Bio-Inspired Computing.

[13]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[15]  Ning Wang,et al.  Hybrid Optimization Method Based on Membrane Computing , 2011 .

[16]  Grzegorz Rozenberg,et al.  Handbook of Natural Computing , 2011, Springer Berlin Heidelberg.

[17]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[18]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[19]  Hongyuan Gao,et al.  Membrane quantum particle swarm optimisation for cognitive radio spectrum allocation , 2012, Int. J. Comput. Appl. Technol..

[20]  Marian Gheorghe,et al.  QEAM: An Approximate Algorithm Using P Systems with Active Membranes , 2015, Int. J. Comput. Commun. Control.

[21]  Gabriel Ciobanu,et al.  Distributed Evolutionary Algorithms Inspired by Membranes in Solving Continuous Optimization Problems , 2006, Workshop on Membrane Computing.

[22]  Ning Wang,et al.  A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model , 2012 .

[23]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[24]  Vladimir Sarpe,et al.  Parametric evolution of a bacterial signalling system formalized by membrane computing , 2010, IEEE Congress on Evolutionary Computation.

[25]  Qin,et al.  A Population-Membrane-System-Inspired Evolutionary Algorithm for Distribution Network Reconfiguration , 2014 .

[26]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[27]  Marian Gheorghe,et al.  A Novel Membrane Algorithm Based on Particle Swarm Optimization for Solving Broadcasting Problems , 2012, J. Univers. Comput. Sci..

[28]  Liang Huang,et al.  Multiobjective Optimization for Controller Design , 2008 .

[29]  Natalio Krasnogor,et al.  Structure and parameter estimation for cell systems biology models , 2008, GECCO '08.

[30]  Jieqing Xing,et al.  An Optimization Algorithm Based on Evolution Rules on Cellular System , 2012, ISICA.

[31]  Xuebai Zhang,et al.  A Memetic Algorithm Based on P Systems for IIR Digital Filter Design , 2009, 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing.

[32]  Marian Gheorghe,et al.  A multi-objective membrane algorithm for knapsack problems , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[33]  Tao Wang,et al.  Automatic Design of Cell-like P Systems through Tuning Membrane Structures, Initial Objects and Evolution Rules , 2013, Int. J. Unconv. Comput..

[34]  Marian Gheorghe,et al.  Tuning P Systems for Solving the Broadcasting Problem , 2009, Workshop on Membrane Computing.

[35]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[36]  Hongyuan Gao,et al.  Membrane-inspired quantum shuffled frog leaping algorithm for spectrum allocation , 2012 .

[37]  Florentin Ipate,et al.  Using Genetic Algorithms and Model Checking for P Systems Automatic Design , 2011, NICSO.

[38]  Yang Jiang,et al.  Image Thresholding with Cell-like P Systems , 2012 .

[39]  Florentin Ipate,et al.  Evolutionary Design of a Simple Membrane System , 2011, Int. Conf. on Membrane Computing.

[40]  Marian Gheorghe,et al.  A membrane algorithm with quantum-inspired subalgorithms and its application to image processing , 2012, Natural Computing.

[41]  Gexiang Zhang,et al.  Quantum-inspired evolutionary algorithms: a survey and empirical study , 2011, J. Heuristics.

[42]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[43]  Yourui Huang,et al.  Membrane Computing Optimization Method Based on Catalytic Factor , 2012, BICS.

[44]  Alberto Leporati,et al.  A Membrane Algorithm for the Min Storage Problem , 2006, Workshop on Membrane Computing.

[45]  Hong Peng,et al.  A novel image thresholding method based on membrane computing and fuzzy entropy , 2013, J. Intell. Fuzzy Syst..

[46]  Marian Gheorghe,et al.  Research Frontiers of membrane Computing: Open Problems and Research Topics , 2013, Int. J. Found. Comput. Sci..

[47]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[48]  Xiangxiang Zeng,et al.  A Novel Membrane Algorithm Based on Differential Evolution for Numerical Optimization , 2011, Int. J. Unconv. Comput..

[49]  Marian Gheorghe,et al.  A Quantum-Inspired Evolutionary Algorithm Based on P systems for Knapsack Problem , 2008, Fundam. Informaticae.

[50]  Qi Meng,et al.  A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems , 2013, Appl. Soft Comput..

[51]  Y. Suzuki,et al.  Computational living systems based on an abstract chemical system , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[52]  Yao Zhang,et al.  A variant of P systems for optimization , 2009, Neurocomputing.

[53]  Il Hong Suh,et al.  Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants , 2011, Inf. Sci..

[54]  Marian Gheorghe,et al.  Dynamic Behavior Analysis of Membrane-Inspired Evolutionary Algorithms , 2014, Int. J. Comput. Commun. Control.

[55]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[56]  Tang Wei,et al.  Optimization of PID Controller Parameters Based on PSO Algorithm and its Application in Temperature Control of Displacement Cooking Digester , 2016 .

[57]  Taishin Y. Nishida Membrane Algorithms , 2005, Workshop on Membrane Computing.

[58]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[59]  Ning Wang,et al.  A bio-inspired algorithm based on membrane computing and its application to gasoline blending scheduling , 2011, Comput. Chem. Eng..

[60]  Gexiang Zhang,et al.  A quantum-inspired evolutionary algorithm based on P systems for radar emitter signals , 2009, 2009 Fourth International on Conference on Bio-Inspired Computing.

[61]  Marian Gheorghe,et al.  A particle swarm optimization based on P systems , 2010, 2010 Sixth International Conference on Natural Computation.

[62]  Haizhu Chen,et al.  A Constrained Optimization Evolutionary Algorithm Based on Membrane Computing , 2012, J. Digit. Inf. Manag..

[63]  Nils J. Nilsson,et al.  Artificial Intelligence: A New Synthesis , 1997 .

[64]  Natalio Krasnogor,et al.  P system model optimisation by means of evolutionary based search algorithms , 2010, GECCO '10.

[65]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[66]  Christian Blum,et al.  Hybrid Metaheuristics: An Introduction , 2008, Hybrid Metaheuristics.

[67]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[68]  EMAD NABIL,et al.  A P system design using clonal selection algorithm , 2011 .

[69]  Juanjuan He,et al.  A hybrid membrane evolutionary algorithm for solving constrained optimization problems , 2014 .

[70]  Lingbo Zhang,et al.  Membrane computing based particle swarm optimization algorithm and its application , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[71]  Miguel Ángel Gutiérrez Naranjo,et al.  An Application of Genetic Algorithms to Membrane Computing , 2010 .

[72]  Mario J Pérez-Jiménez,et al.  Membrane computing: brief introduction, recent results and applications. , 2006, Bio Systems.

[73]  Marian Gheorghe,et al.  An Improved Membrane Algorithm for Solving Time-Frequency Atom Decomposition , 2009, Workshop on Membrane Computing.

[74]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[75]  Chuang Liu,et al.  A multi-objective evolutionary algorithm based on membrane systems , 2011, The Fourth International Workshop on Advanced Computational Intelligence.

[76]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[77]  Andrea E. Olsson Particle Swarm Optimization: Theory, Techniques and Applications , 2010 .

[78]  Liang Huang,et al.  Controller design for a marine diesel engine using membrane computing , 2009 .

[79]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[80]  Mario J. Pérez-Jiménez,et al.  MeCoSim: A general purpose software tool for simulating biological phenomena by means of P systems , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[81]  Natalio Krasnogor,et al.  Evolving cell models for systems and synthetic biology , 2010, Systems and Synthetic Biology.

[82]  Jian-hua Xiao,et al.  A membrane evolutionary algorithm for DNA sequence design in DNA computing , 2012 .

[83]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[84]  Huang Liang,et al.  P systems based multi-objective optimization algorithm , 2007 .

[85]  Susan Elias,et al.  A Variant of Distributed P Systems for Real Time Cross Layer Optimization , 2012, J. Univers. Comput. Sci..

[86]  Ge-Xiang Zhang,et al.  Analyzing radar emitter signals with membrane algorithms , 2010, Math. Comput. Model..

[87]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[88]  Taishin Yasunobu Nishida,et al.  Membrane Algorithms: Approximate Algorithms for NP-Complete Optimization Problems , 2006, Applications of Membrane Computing.

[89]  Chuang Liu,et al.  A novel evolutionary membrane algorithm for global numerical optimization , 2012, 2012 Third International Conference on Intelligent Control and Information Processing.

[90]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[91]  Miguel A. Martínez-del-Amor,et al.  P-Lingua 2.0: A software framework for cell-like P systems , 2009, Int. J. Comput. Commun. Control.

[92]  Jian-hua Xiao,et al.  A Bio-Inspired Algorithm based on Membrane Computing for Engineering Design problem , 2013 .

[93]  Hiroshi Tanaka,et al.  Artificial Life Applications of a Class of P Systems: Abstract Rewriting Systems on Multisets , 2000, WMP.

[94]  Eugueni Smirnov,et al.  Conjunctive and Disjunctive Version Spaces with Instance-based Boundary Sets , 2001 .

[95]  Lei Sun,et al.  Multiobjective Optimization of Simulated Moving Bed by Tissue P System * * Supported by the National , 2007 .

[96]  Pierluigi Frisco,et al.  Applications of Membrane Computing in Systems and Synthetic Biology , 2014 .