Interaction of an intense laser field with a dielectric containing metallic nanoparticles

In order to understand the role played by nanodefects in optical breakdown of dielectrics, the interaction of an intense laser field with model dielectric samples containing metallic nanoparticles is studied both theoretically and experimentally. A theoretical study of the metal conduction electrons dynamics in the laser field predicts an efficient injection of carriers from the metallic inclusion to the conduction band of the dielectric, which leads to a strong local increase of the optical absorption in the initially transparent matrix. This prediction is tested experimentally by using time-resolved spectral interferometry to measure excitation densities as a function of the laser intensity in silica samples doped with gold nanoparticles, which are compared with similar measurements in pure silica.