Membrane reactors for fuel cell quality hydrogen through WGSR Review of their status, challenges a

The growing environmental concerns on the technologies being adopted for non-renewable energy generation and consumption has brought in a new dimension to the role of water gas shift reaction (WGSR) in providing pure hydrogen to the portable and stationery fuel cell systems. The review has focussed on the status of the membrane reactor technology for WGSR, the activity and deactivation of catalysts employed, efficiency of ceramic membrane systems, the membrane reactor configuration and design aspects, kinetics and mechanism of WGSR and modelling for simulation of membrane reactor performance specifically with reference to its application in fuel cell systems.

[1]  Raymond J. Gorte,et al.  Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties , 1998 .

[2]  V. Idakiev,et al.  Low-temperature water-gas shift reaction over Au/α-Fe2O3 , 1996 .

[3]  J. Moma,et al.  CO oxidation: Deactivation of Au/TiO2 catalysts during storage , 2009 .

[4]  J. D. Costa,et al.  Membrane reactor modelling, validation and simulation for the WGS reaction using metal doped silica membranes , 2010 .

[5]  R. Hughes,et al.  Mathematical analysis of ethylbenzene dehydrogenation: Comparison of microporous and dense membrane systems , 1995 .

[6]  H. Andrade,et al.  Zeolite catalysts for the water gas shift reaction , 1999 .

[7]  Yi Hua Ma,et al.  Modeling and performance assessment of Pd- and Pd/Au-based catalytic membrane reactors for hydrogen production , 2009 .

[8]  C. Lund Effect of Adding Co to MoS2/Al2O3 upon the Kinetics of the Water−Gas Shift , 1996 .

[9]  Enrico Drioli,et al.  Analysis of safety aspects in a membrane reactor , 2006 .

[10]  G. Webb,et al.  Adsorption of water on polycrystalline copper: relevance to the water gas shift reaction , 1991 .

[11]  F. Degertekin,et al.  Effect of microstructure on hydrogen permeation through thermally stable, sputtered palladium-silver alloy membranes , 2007 .

[12]  Robert J. Farrauto,et al.  NEW MATERIAL NEEDS FOR HYDROCARBON FUEL PROCESSING: Generating Hydrogen for , 2003 .

[13]  Jam Hans Kuipers,et al.  Modelling of packed bed membrane reactors for autothermal production of ultrapure hydrogen , 2006 .

[14]  J. Moulijn,et al.  Mechanism of deactivation of Au/Fe2O3 catalysts under water–gas shift conditions , 2007 .

[15]  R. H. Williams,et al.  Inorganic membranes for hydrogen production and purification: a critical review and perspective. , 2007, Journal of colloid and interface science.

[16]  D. Ollis,et al.  The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts , 1981 .

[17]  C. Apesteguía,et al.  Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts , 1997 .

[18]  B. Su,et al.  Gold catalysts supported on mesoporous zirconia for low-temperature water–gas shift reaction , 2006 .

[19]  G. Hutchings A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide, and copper manganese oxide as catalysts for the water-gas shift reaction , 1992 .

[20]  Feng Li,et al.  Activity and deactivation of Au/Al2O3 catalyst for low-temperature CO oxidation , 2007 .

[21]  W. A. Jong,et al.  Kinetics and mechanism of the CO shift on CuZnO: 1. Kinetics of the forward and reverse CO shift reactions , 1980 .

[22]  B. Morreale,et al.  Effect of hydrogen-sulfide on the hydrogen permeance of palladium–copper alloys at elevated temperatures , 2004 .

[23]  E. Drioli,et al.  Theoretical analysis of the effect of catalyst mass distribution and operation parameters on the performance of a Pd-based membrane reactor for water–gas shift reaction , 2008 .

[24]  A. Ghenciu,et al.  Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction , 2004 .

[25]  Abhaya K. Datye,et al.  PdZnAl catalysts for the reactions of water-gas-shift, methanol steam reforming, and reverse-water-gas-shift , 2008 .

[26]  V. Idakiev,et al.  Pure hydrogen production on a new gold–thoria catalyst for fuel cell applications , 2006 .

[27]  E. Drioli,et al.  Membrane reactor for water gas shift reaction , 1996 .

[28]  J. Hayashi,et al.  Development of supported thin palladium membrane and application to enhancement of propane aromatization on Ga-silicate catalyst , 1996 .

[29]  R. Bredesen,et al.  Hydrogen permeation of thin, free-standing Pd/Ag23% membranes before and after heat treatment in air , 2008 .

[30]  T. Salmi,et al.  Modelling of the high temperature water gas shift reaction with stationary and transient experiments , 1986 .

[31]  Ib Chorkendorff,et al.  A Microkinetic Analysis of the Water–Gas Shift Reaction under Industrial Conditions , 1996 .

[32]  Levi T. Thompson,et al.  Deactivation of Au/CeOx water gas shift catalysts , 2005 .

[33]  S. Nam,et al.  Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier , 2001 .

[34]  T. Kojima,et al.  Stability and hydrogen permeation behavior of supported platinum membranes in presence of hydrogen sulfide , 1999 .

[35]  R. Gorte,et al.  Deactivation of the water–gas-shift activity of Pd/ceria by Mo , 2004 .

[36]  Yutaek Seo,et al.  Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor , 2006 .

[37]  Raymond J. Gorte,et al.  Deactivation Mechanisms for Pd/Ceria During the Water-Gas Shift Reaction , 2002 .

[38]  C. Rhodes,et al.  Studies of the role of the copper promoter in the iron oxide/chromia high temperature water gas shift catalyst , 2003 .

[39]  D. Miller,et al.  Silica membrane reactors for hydrogen processing , 2007 .

[40]  T. Salmi,et al.  Kinetic Study of the Low-Temperature Water-Gas Shift Reaction over a Cu—ZnO Catalyst , 1989 .

[41]  Charles T. Campbell,et al.  A kinetic model of the water gas shift reaction , 1992 .

[42]  W. A. Pledger,et al.  Catalytic platinum-based membrane reactor for removal of H2S from natural gas streams , 1994 .

[43]  R. J. Klingler,et al.  Comparative energy barriers for hydrogen activation by homogeneous and heterogeneous metal oxide catalysts , 1989 .

[44]  Raymond J. Gorte,et al.  A comparative study of water-gas-shift reaction over ceria supported metallic catalysts , 2001 .

[45]  Guoxing Xiong,et al.  Preparation of Pd/ceramic composite membrane 1. Improvement of the conventional preparation technique , 1996 .

[46]  R. Radhakrishnan,et al.  Water gas shift activity and kinetics of Pt/Re catalysts supported on ceria-zirconia oxides , 2006 .

[47]  Harvey G. Stenger,et al.  Kinetics, simulation and optimization of methanol steam reformer for fuel cell applications , 2005 .

[48]  C. Campbell,et al.  Kinetics and mechanism of the water-gas shift reaction catalysed by the clean and Cs-promoted Cu(110) surface: a comparison with Cu(111) , 1990 .

[49]  Volkmar M. Schmidt,et al.  Components for PEM fuel cell systems using hydrogen and CO containing fuels , 1998 .

[50]  V. Violante,et al.  Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor , 2001 .

[51]  D. Newsome The Water-Gas Shift Reaction , 1980 .

[52]  Enrico Drioli,et al.  A study on catalytic membrane reactors for water gas shift reaction , 1996 .

[53]  I. Mitov,et al.  Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3–ZnO, Au/Fe2O3–ZrO2 catalysts for the WGS reaction , 2000 .

[54]  Robert J. Farrauto,et al.  Mechanism of aging for a Pt/CeO2-ZrO2 water gas shift catalyst , 2006 .

[55]  Shaomin Liu,et al.  Metal doped silica membrane reactor: Operational effects of reaction and permeation for the water gas shift reaction , 2008 .

[56]  R. Burch Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. , 2006, Physical chemistry chemical physics : PCCP.

[57]  Michael P. Harold,et al.  Comparison of conventional and membrane reactor fuel processors for hydrocarbon-based PEM fuel cell systems , 2004 .

[58]  A. Sammells,et al.  Nonporous inorganic membranes : for chemical processing , 2006 .

[59]  Thermodynamic Modeling of the High Temperature Shift Converter Reactor Using Minimization of Gibbs Free Energy , 2009 .

[60]  D. Sholl,et al.  A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory , 2003 .

[61]  Effect of temperature on equilibrium shift in reactors with a permselective wall , 1988 .

[62]  C. Grigoropoulos,et al.  Transport phenomena in a steam-methanol reforming microreactor with internal heating , 2009 .

[63]  J. Papavasiliou,et al.  A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction , 2006 .

[64]  D. Sholl,et al.  Density functional theory studies of sulfur binding on Pd, Cu and Ag and their alloys , 2003 .

[65]  Norma Amadeo,et al.  Hydrogen production from the low-temperature water-gas shift reaction: Kinetics and simulation of the industrial reactor , 1995 .

[66]  Ute Kaiser,et al.  Deactivation of a Au/CeO2 catalyst during the low-temperature water-gas shift reaction and its reactivation : A combined TEM, XRD, XPS, DRIFTS, and activity study , 2007 .

[67]  V. Idakiev,et al.  A comparative study of nanosized IB/ceria catalysts for low-temperature water-gas shift reaction , 2006 .

[68]  Nigel P. Brandon,et al.  Recent Advances in Materials for Fuel Cells , 2003 .

[69]  D. Sholl,et al.  Using first-principles calculations to predict surface resistances to H2 transport through metal alloy membranes , 2007 .

[70]  M. Iwamoto,et al.  Water gas shift reaction catalyzed by metal ion-exchanged zeolites , 1983 .

[71]  R. Kikuchi,et al.  Water gas shift reaction of reformed fuel over supported Ru catalysts , 2003 .

[72]  J. C. Schouten,et al.  Exergy analysis of an integrated fuel processor and fuel cell (FP–FC) system , 2006 .

[73]  A. Dalai,et al.  Low-temperature water-gas shift reaction over Mn-promoted Cu/Al2O3 catalysts , 2006 .

[74]  N. Sato,et al.  Membrane Reactor Using Microporous Glass-supported Thin Film of Palladium. Application to the Water Gas Shift Reaction , 1989 .

[75]  A. C. Crawford,et al.  Water-gas shift: steady state isotope switching study of the water-gas shift reaction over Pt/ceria using in-situ DRIFTS , 2005 .

[76]  C. Lund,et al.  Assessing High-Temperature Water−Gas Shift Membrane Reactors , 2003 .

[77]  Enrico Drioli,et al.  An economic feasibility study for water gas shift membrane reactor , 2001 .

[78]  Jtf Jos Keurentjes,et al.  Influence of steam and carbon dioxide on the hydrogen flux through thin Pd/Ag and Pd membranes , 2006 .

[79]  Enrico Drioli,et al.  Simulation study of water gas shift reaction in a membrane reactor , 2007 .

[80]  Rolf Jürgen Behm,et al.  Influence of CO2 and H2 on the low-temperature water–gas shift reaction on Au/CeO2 catalysts in idealized and realistic reformate , 2007 .

[81]  Francesca Sarto,et al.  Sputtered, electroless, and rolled palladium–ceramic membranes , 2002 .

[82]  E. Drioli,et al.  Membrane integrated system in the fusion reactor fuel cycle , 1995 .

[83]  M. Castaldi,et al.  Deactivation, Regeneration, and Stable Performance of a PtMoRe Water Gas Shift Catalyst for On-Site Hydrogen Generation: Part 2 , 2008 .

[84]  R. Dittmeyer,et al.  Mathematical simulation of catalytic dehydrogenation of ethylbenzene to styrene in a composite palladium membrane reactor , 1997 .

[85]  Robert J. Farrauto,et al.  Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria , 2007 .

[86]  S. C. Parker,et al.  Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper , 1995 .

[87]  Albert Renken,et al.  Hydrogen production for fuel cell application in an autothermal micro-channel reactor , 2004 .

[88]  Timothy L. Ward,et al.  Model of hydrogen permeation behavior in palladium membranes , 1999 .

[89]  Yuehe Lin,et al.  Nanostructured thin palladium-silver membranes: Effects of grain size on gas permeation properties , 2001 .

[90]  Adélio Mendes,et al.  The water‐gas shift reaction: from conventional catalytic systems to Pd‐based membrane reactors—a review , 2010 .

[91]  Howard F. Rase,et al.  Handbook of Commercial Catalysts: Heterogeneous Catalysts , 2000 .

[92]  Gary Jacobs,et al.  Low temperature water–gas shift: in situ DRIFTS-reaction study of ceria surface area on the evolution of formates on Pt/CeO2 fuel processing catalysts for fuel cell applications , 2003 .

[93]  U. Ozkan,et al.  Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction , 2006 .

[94]  D. Thompson,et al.  Gold's future role in fuel cell systems , 2003 .

[95]  C. Rhodes,et al.  Water-gas shift reaction: finding the mechanistic boundary , 1995 .

[96]  Tsung Leo Jiang,et al.  Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions , 2008 .

[97]  A. Varma,et al.  Novel preparation of Pd/Vycor composite membranes , 1995 .

[98]  G. Germani,et al.  Water-gas shift reaction kinetics over μ-structured Pt/CeO2/Al2O3 catalysts , 2006 .

[99]  V. Violante,et al.  Pd-Ag Membrane Reactors for Water Gas Shift Reaction , 2003 .

[100]  M. Boudart,et al.  Mössbauer spectroscopy of CO shift catalysts promoted with lead , 1973 .

[101]  André Faaij,et al.  Techno-economic prospects of small-scale membrane reactors in a future hydrogen-fuelled transportation sector , 2006 .

[102]  M. Flytzani-Stephanopoulos,et al.  Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. , 2008, Angewandte Chemie.

[103]  João C. Diniz da Costa,et al.  Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction , 2003 .

[104]  E. Kikuchi Palladium/ceramic membranes for selective hydrogen permeation and their application to membrane reactor , 1995 .

[105]  C. Campbell,et al.  A surface science investigation of the water-gas shift reaction on Cu(111) , 1987 .

[106]  William J. Dawson,et al.  Fuel processing catalysts based on nanoscale ceria , 2001 .

[107]  N. Coville,et al.  The selective influence of sulfur on the performance of novel cobalt-based water-gas shift catalysts , 1997 .

[108]  Bongjin Simon Mun,et al.  Deactivation mechanism of a Au/CeZrO4 catalyst during a low-temperature water gas shift reaction , 2007 .

[109]  Y. S. Lin,et al.  Effect of metal‐support interface on hydrogen permeation through palladium membranes , 2009 .

[110]  J. M. Zalc,et al.  Are Noble Metal-Based Water–Gas Shift Catalysts Practical for Automotive Fuel Processing? , 2002 .

[111]  G. Hutchings,et al.  Manganese oxide water—gas shift catalysts initial optimization studies , 1989 .

[112]  V. Idakiev,et al.  Low-temperature water-gas shift reaction on Auα-Fe2O3 catalyst , 1996 .

[113]  E. Drioli,et al.  An analysis of the performance of membrane reactors for the water–gas shift reaction using gas feed mixtures , 2000 .

[114]  Eduardo López,et al.  Theoretical study of a membrane reactor for the water gas shift reaction under nonisothermal conditions , 2009 .

[115]  Naotsugu Itoh,et al.  An adiabatic type of palladium membrane reactor for coupling endothermic and exothermic reactions , 1997 .

[116]  Norma Amadeo,et al.  Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell , 2006 .

[117]  B. Morreale,et al.  Wall-catalyzed Water-Gas Shift Reaction in Multi-tubular, Pd and 80wt%Pd-20wt%Cu Membrane Reactors at 1173K , 2007 .

[118]  B. Su,et al.  Mesoporous and nanostructured CeO2 as supports of nano-sized gold catalysts for low-temperature water-gas shift reaction , 2008 .

[119]  Thomas A. Adams,et al.  A dynamic two-dimensional heterogeneous model for water gas shift reactors , 2009 .

[120]  W. Jin,et al.  Silicalite-1 Zeolite Membrane Reactor Packed with HZSM-5 Catalyst for meta-Xylene Isomerization , 2009 .

[121]  Manos Mavrikakis,et al.  On the mechanism of low-temperature water gas shift reaction on copper. , 2008, Journal of the American Chemical Society.

[122]  T. Moustafa Simultaneous production of styrene and cyclohexane in an integrated membrane reactor , 2000 .

[123]  David Wong,et al.  Bubble Behaviour in Three Phase Capillary Microreactors , 2003 .

[124]  F. Kapteijn,et al.  Preparation of thin porous titania films on stainless steel substrates for heat exchange (HEX) reactors , 2003 .

[125]  M. Menéndez,et al.  Inorganic Membranes : Synthesis, Characterization and Applications , 2008 .

[126]  Mayuresh V. Kothare,et al.  Modeling of Multicomponent Concentration Profiles in Membrane Microreactors , 2005 .

[127]  Robert J. Farrauto,et al.  Deactivation of Pt/CeO2 water-gas shift catalysts due to shutdown/startup modes for fuel cell applications , 2005 .

[128]  A. Dixon Recent Research in Catalytic Inorganic Membrane Reactors , 2003 .

[129]  Ryuji Kikuchi,et al.  Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels , 2003 .

[130]  J. Beltramini,et al.  An analysis of the Peclet and Damkohler numbers for dehydrogenation reactions using Molecular Sieve Silica (MSS) membrane reactors , 2006 .

[131]  M. J. Shah,et al.  KINETIC MODELS FOR CONSECUTIVE HETEROGENEOUS REACTIONS , 1965 .

[132]  Maria Flytzani-Stephanopoulos,et al.  Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts , 2000 .

[133]  Thermodynamic Analysis for the Production of Hydrogen through Sorption Enhanced Water Gas Shift (SEWGS) , 2008 .

[134]  Sotiris E. Pratsinis,et al.  Hydrothermal stability of pure and modified microporous silica membranes , 1995, Journal of Materials Science.

[135]  Sunggyu Lee,et al.  Encyclopedia of Chemical Processing , 2005 .

[136]  K. C. Waugh,et al.  Promotion of methanol synthesis and the water-gas shift reactions by adsorbed oxygen on supported copper catalysts , 1987 .

[137]  J. M. Zalc,et al.  Fuel processing for PEM fuel cells: transport and kinetic issues of system design , 2002 .

[138]  M. Fowler,et al.  Experimental and modeling study of solid oxide fuel cell operating with syngas fuel , 2006 .

[139]  H. García,et al.  Comparison of Nanosized Gold-Based and Copper-Based Catalysts for the Low-Temperature Water−Gas Shift Reaction , 2009 .

[140]  Ching-Shiun Chen,et al.  Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst , 2003 .

[141]  Shin-ichiro Fujita,et al.  Mechanism of the reverse water gas shift reaction over Cu/ZnO catalyst , 1992 .

[142]  M. Flytzani-Stephanopoulos,et al.  Activity and Stability of Cu−CeO2 Catalysts in High-Temperature Water−Gas Shift for Fuel-Cell Applications , 2004 .

[143]  William E. Liss,et al.  V.D.2 Development of a Natural Gas to Hydrogen Fuel Station , 2002 .

[144]  R. Behm,et al.  Kinetics and mechanism of the low-temperature water–gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere , 2006 .

[145]  Yuehe Lin,et al.  Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes , 1995 .

[146]  Xiaojun Tan,et al.  Fabrication and characterization of Pd/Ag alloy hollow spheres by the solvothermal method , 2008 .