Enumeration of m-Ary Cacti

The purpose of this paper is to enumerate various classes of cyclically colored m-gonal plane cacti, called m-ary cacti. This combinatorial problem is motivated by the topological classification of complex polynomials having at most m critical values, studied by Zvonkin and others. We obtain explicit formulae for both labelled and unlabelled m-ary cacti, according to (i) the number of polygons, (ii) the vertex-color distribution, (iii) the vertex-degree distribution of each color. We also enumerate m-ary cacti according to the order of their automorphism group. Using a generalization of Otter's formula, we express the species of m-ary cacti in terms of rooted and of pointed cacti. A variant of the m-dimensional Lagrange inversion is then used to enumerate these structures. The method of Liskovets for the enumeration of unrooted planar maps can also be adapted to m-ary cacti.

[1]  Laurent Chottin Une demonstration combinatoire de la formule de lagrange a deux variables , 1975, Discret. Math..

[2]  Gilbert Labelle,et al.  On asymmetric structures , 1992, Discret. Math..

[3]  Ian P. Goulden,et al.  The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group , 1992, Eur. J. Comb..

[4]  Laurent Chottin,et al.  Énumération d'arbres et formules d'inversion de séries formellles , 1981, J. Comb. Theory, Ser. B.

[5]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[6]  Nicolas Hanusse,et al.  Cacti, braids and complex polynomials. , 1996 .

[7]  H. I. Scoins,et al.  The number of trees with nodes of alternate parity , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  R. Riddell,et al.  Contributions to the theory of condensation , 1951 .

[9]  G. W. Ford,et al.  Lectures in statistical mechanics , 1963 .

[10]  Frank Harary,et al.  Graphical enumeration , 1973 .

[11]  Gilbert Labelle,et al.  Enumeration of (uni- or bicolored) plane trees according to their degree distribution , 1996, Discret. Math..

[12]  F Harary,et al.  On the Number of Husimi Trees: I. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Mireille Bousquet-Mélou,et al.  Enumeration of Planar Constellations , 2000, Adv. Appl. Math..

[14]  A. Khovanskii,et al.  BRANCHED COVERS OF S2 AND BRAID GROUPS , 1996 .

[15]  Kôdi Husimi,et al.  Note on Mayers' Theory of Cluster Integrals , 1950 .

[16]  David W. Walkup,et al.  The number of plane trees , 1972 .

[17]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[18]  Frank Harary,et al.  The Dissimilarity Characteristic of Husimi Trees , 1953 .