Best Compromise Alternative to EELD Problem using Hybrid Multiobjective Quantum Genetic Algorithm

A novel hybrid multiobjective quantum genetic algorithm (HM-QGA) for economic emission load dispatch (EELD) optimization problem is presented. The EELD problem is formulated as a nonlinear constrained multiobjective optimization problem with both equality and inequality constraints. HM-QGA are population based evolutionary algorithms that imitate quantum physics by introducing quantum bits for a basic probabilistic genotypic representation a nd hence better population diversity, and quantum gates for evolving the population of solutions. We use quantum genetic algorithm to exploits the power of quantum computing to speed up genetic algorithm procedure. We present methodology that allows the decision maker (DM) to be a partner in problem solving, where DM specifies input values (namely the weight values) according his need s. Simulation results on the standard IEEE 30-bus 6-generator test system show that the proposed algorithm outperforms other heuristic algorithms and is characterized by robustness, high success, fast convergence and excellent capability on global searching.

[1]  Wai-yu. Ng Generalized Generation Distribution Factors for Power System Security Evaluations , 1981, IEEE Transactions on Power Apparatus and Systems.

[2]  Zhang Zhisheng Short Communication: Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system , 2010 .

[3]  David L. Olson,et al.  Comparison of weights in TOPSIS models , 2004, Math. Comput. Model..

[4]  R. Hinterding Representation, constraint satisfaction and the knapsack problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  M. Abido Environmental/economic power dispatch using multiobjective evolutionary algorithms , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[6]  C. Patvardhan,et al.  Real-parameter quantum evolutionary algorithm for economic load dispatch , 2008 .

[7]  Megha Khandelwal,et al.  Quantum Computing: An Introduction , 2013 .

[8]  Kalyanmoy Deb,et al.  Solving the multiobjective environmental/economic dispatch problem with prohibited operating zones using NSGA-II , 2011, Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing.

[9]  Yali Wu,et al.  Improved Multiobjective Particle Swarm Optimization for Environmental/Economic Dispatch Problem in Power System , 2011, ICSI.

[10]  Taher Niknam,et al.  Multiobjective economic/emission dispatch by multiobjective θ-particle swarm optimisation , 2012 .

[11]  由希 辻 Representation , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[12]  D. Hazarika,et al.  Modified loss coefficients in the determination of optimum generation scheduling , 1991 .

[13]  Zhang Jin,et al.  Multiobjective particle swarm optimization based on differential evolution for environmental/economic dispatch problem , 2011, 2011 Chinese Control and Decision Conference (CCDC).

[14]  Mehdi Ehsan,et al.  A Probabilistic Modeling of Photo Voltaic Modules and Wind Power Generation Impact on Distribution Networks , 2012, IEEE Systems Journal.

[15]  Panchi Li,et al.  Quantum-inspired evolutionary algorithm for continuous space optimization based on Bloch coordinates of qubits , 2008, Neurocomputing.

[16]  Ajit Narayanan,et al.  Quantum computing for beginners , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[17]  L. H. Wua,et al.  Environmental/economic power dispatch problem using multi-objective differential evolution algorithm , 2010 .

[18]  S. A. Al-Baiyat,et al.  Economic load dispatch multiobjective optimization procedures using linear programming techniques , 1995 .

[19]  Guanghua Xu,et al.  Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks , 2009, Comput. Math. Appl..

[20]  Mohammad Ali Abido,et al.  Multiobjective evolutionary algorithms for electric power dispatch problem , 2006, IEEE Transactions on Evolutionary Computation.

[21]  Malabika Basu,et al.  Hybridization of bee colony optimization and sequential quadratic programming for dynamic economic dispatch , 2013 .

[22]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[23]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[24]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[25]  Yaonan Wang,et al.  Environmental/economic power dispatch problem using multi-objective differential evolution algorithm , 2010 .

[26]  Tao Yu,et al.  Equilibrium-Inspired Multiple Group Search Optimization With Synergistic Learning for Multiobjective Electric Power Dispatch , 2013, IEEE Transactions on Power Systems.

[27]  M.S. Osman,et al.  Epsilon-dominance based multiobjective genetic algorithm for economic emission load dispatch optimization problem , 2006, 2006 Eleventh International Middle East Power Systems Conference.

[28]  Hao Wu,et al.  Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation , 2005, Appl. Math. Comput..

[29]  A. A. Mousa Hybrid multiobjective evolutionary algorithm based technique for economic emission load dispatch optimization problem , 2011 .

[30]  Mahmoud A. Abo-Sinna,et al.  IT-CEMOP: An iterative co-evolutionary algorithm for multiobjective optimization problem with nonlinear constraints , 2006, Appl. Math. Comput..

[31]  A. K. Barisal,et al.  An evolutionary programming based neuro-fuzzy technique for multiobjective generation dispatch , 2011, 2011 International Conference on Energy, Automation and Signal.

[32]  Vahid Vahidinasab,et al.  Joint economic and emission dispatch in energy markets: A multiobjective mathematical programming approach , 2010 .

[33]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.

[34]  Manoj Kumar Tiwari,et al.  Multiobjective Particle Swarm Algorithm With Fuzzy Clustering for Electrical Power Dispatch , 2008, IEEE Transactions on Evolutionary Computation.

[35]  C. Christober Asir Rajan,et al.  A solution to the economic dispatch using EP based SA algorithm on large scale power system , 2010 .

[36]  Zhisheng Zhang,et al.  Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system , 2010, Expert Syst. Appl..

[37]  Jacob Østergaard,et al.  Reactive power and voltage control based on general quantum genetic algorithms , 2009, Expert Syst. Appl..

[38]  Yadwinder Singh Brar,et al.  Multiobjective load dispatch using Particle Swarm Optimization , 2013, 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA).

[39]  Jian-Xin Xu,et al.  Constrained multiobjective global optimisation of longitudinal interconnected power system by genetic algorithm , 1996 .

[40]  Gwo-Ching Liao,et al.  Solve environmental economic dispatch of Smart MicroGrid containing distributed generation system – Using chaotic quantum genetic algorithm , 2012 .

[41]  Prakash Kumar Hota,et al.  Economic emission load dispatch through fuzzy based bacterial foraging algorithm , 2010 .

[42]  Mahmoud A. Abo-Sinna,et al.  A solution to the optimal power flow using genetic algorithm , 2004, Appl. Math. Comput..

[43]  Fred Joseph Gruenberger,et al.  Computing: An Introduction , 1969 .

[44]  Carlos Bordons,et al.  Combined environmental and economic dispatch of smart grids using distributed model predictive control , 2014 .

[45]  Wenbo Xu,et al.  Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method , 2009 .

[46]  M. A. Abido,et al.  A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch , 2003 .

[47]  Taher Niknam,et al.  Reserve Constrained Dynamic Environmental/Economic Dispatch: A New Multiobjective Self-Adaptive Learning Bat Algorithm , 2013, IEEE Systems Journal.

[48]  Ali Ghasemi,et al.  A fuzzified multi objective Interactive Honey Bee Mating Optimization for Environmental/Economic Power Dispatch with valve point effect , 2013 .

[49]  A. A. Abido,et al.  A new multiobjective evolutionary algorithm for environmental/economic power dispatch , 2001, 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262).

[50]  Bijay Ketan Panigrahi,et al.  Multiobjective bacteria foraging algorithm for electrical load dispatch problem , 2011 .

[51]  J.R. Cedeno-Maldonado,et al.  Differential evolution based economic environmental power dispatch , 2005, Proceedings of the 37th Annual North American Power Symposium, 2005..

[52]  D. P. Kothari,et al.  Stochastic economic emission load dispatch , 1993 .

[53]  G. P. Granelli,et al.  Emission constrained dynamic dispatch , 1992 .

[54]  D. J. Tylavsky,et al.  Quantum computing in power system simulation , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[55]  Leandro dos Santos Coelho,et al.  Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects , 2008 .

[56]  M. A. Abido,et al.  Multiobjective particle swarm optimization for environmental/economic dispatch problem , 2009 .