A Formalized Theory for Verifying Stability and Convergence of Automata in PVS

Correctness of many hybrid and distributed systems require stability and convergence guarantees. Unlike the standard induction principle for verifying invariance, a theory for verifying stability or convergence of automata is currently not available. In this paper, we formalize one such theory proposed by Tsitsiklis [27]. We build on the existing PVS metatheory for untimed, timed, and hybrid input/output automata, and incorporate the concepts about fairness, stability, Lyapunov-like functions, and convergence. The resulting theory provides two sets of sufficient conditions, which when instantiated and verified for particular automata, guarantee convergence and stability, respectively.

[1]  Tobias Nipkow,et al.  I/Q Automata in Isabelle/HOL , 1994, TYPES.

[2]  Olaf Müller,et al.  I/O Automata and Beyond: Temporal Logic and Abstraction in Isabelle , 1998, TPHOLs.

[3]  Steve Sims,et al.  TAME: A PVS Interface to Simplify Proofs for Automata Models , 1998 .

[4]  Robert W. Floyd,et al.  Assigning Meanings to Programs , 1993 .

[5]  Hanne Riis Nielson,et al.  Programming Languages and Systems — ESOP '96 , 1996, Lecture Notes in Computer Science.

[6]  Tobias Nipkow,et al.  Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL , 2007, TPHOLs.

[7]  Olaf Müller,et al.  A verification environment for I-O-automata based on formalized meta-theory , 1998 .

[8]  Frank Pfenning,et al.  Mode and Termination Checking for Higher-Order Logic Programs , 1996, ESOP.

[9]  Jim Grundy,et al.  Proceedings of the 9th International Conference on Theorem Proving in Higher Order Logics , 1996 .

[10]  Natarajan Shankar,et al.  PVS: Combining Specification, Proof Checking, and Model Checking , 1996, FMCAD.

[11]  Jean-Christophe Filliâtre,et al.  Finite Automata Theory in Coq a Constructive Proof of Kleene's Theorem Ecole Normale Supérieure De Lyon Finite Automata Theory in Coq a Constructive Proof of Kleene's Theorem Finite Automata Theory in Coq a Constructive Proof of Kleene's Theorem , 1997 .

[12]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[13]  Myla Archer,et al.  PVS Strategies for Proving Abstraction Properties of Automata , 2005, Electron. Notes Theor. Comput. Sci..

[14]  Hanne Gottliebsen,et al.  Transcendental Functions and Continuity Checking in PVS , 2000, TPHOLs.

[15]  David Aspinall,et al.  Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.

[16]  MA John Harrison PhD Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.

[17]  John N. Tsitsiklis,et al.  On the stability of asynchronous iterative processes , 1986, 1986 25th IEEE Conference on Decision and Control.

[18]  Maribel Fernández,et al.  Curry-Style Types for Nominal Terms , 2006, TYPES.

[19]  Nancy A. Lynch,et al.  Specifying and proving properties of timed I/O automata using Tempo , 2008, Des. Autom. Embed. Syst..

[20]  Sayan Mitra,et al.  A verification framework for hybrid systems , 2007 .

[21]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[22]  Christine Paulin-Mohring Modelisation of Timed Automata in Coq , 2001, TACS.

[23]  Nancy A. Lynch,et al.  Translating Timed I/O Automata Specifications for Theorem Proving in PVS , 2007 .

[24]  Nancy A. Lynch,et al.  The Theory of Timed I/o Automata , 2003 .

[25]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[26]  Lawrence C. Paulson Mechanizing UNITY in Isabelle , 2000, TOCL.

[27]  Nancy A. Lynch,et al.  Safety Verification of an Aircraft Landing Protocol: A Refinement Approach , 2007, HSCC.

[28]  Nancy A. Lynch,et al.  An introduction to input/output automata , 1989 .

[29]  M.C.A. Devillers Translating IOA automata to PVS , 1999 .

[30]  Benjamin C. Pierce,et al.  Theoretical Aspects of Computer Software , 2001, Lecture Notes in Computer Science.

[31]  Christine Paulin-Mohring,et al.  Types for Proofs and Programs , 2008, Lecture Notes in Computer Science.

[32]  Myla Archer,et al.  TAME: Using PVS strategies for special-purpose theorem proving , 2001, Annals of Mathematics and Artificial Intelligence.

[33]  Jirí Srba,et al.  Comparing the Expressiveness of Timed Automata and Timed Extensions of Petri Nets , 2008, FORMATS.

[34]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.