Border collision bifurcations in a two-dimensional piecewise smooth map from a simple switching circuit.
暂无分享,去创建一个
Pascal Chargé | Laura Gardini | L. Gardini | P. Chargé | D. Fournier-Prunaret | Danièle Fournier-Prunaret
[1] Jaroslav Smítal,et al. ω-Limit sets for triangular mappings , 2001 .
[2] G. Verghese,et al. Nonlinear phenomena in power electronics : attractors, bifurcations, chaos, and nonlinear control , 2001 .
[3] Ángel Rodríguez-Vázquez,et al. Integrated chaos generators , 2002 .
[4] Michael Schanz,et al. Influence of a square-root singularity on the behaviour of piecewise smooth maps , 2010 .
[5] Laura Gardini,et al. Center bifurcation for Two-Dimensional Border-Collision Normal Form , 2008, Int. J. Bifurc. Chaos.
[6] Laura Gardini,et al. Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps , 2010, Int. J. Bifurc. Chaos.
[7] D. Laroze,et al. Commun Nonlinear Sci Numer Simulat , 2013 .
[8] James A. Yorke,et al. BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .
[9] Celso Grebogi,et al. Border collision bifurcations in two-dimensional piecewise smooth maps , 1998, chao-dyn/9808016.
[10] J. Yorke,et al. Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits , 2000 .
[11] James D. Meiss,et al. Neimark-Sacker Bifurcations in Planar, Piecewise-Smooth, Continuous Maps , 2008, SIAM J. Appl. Dyn. Syst..
[12] Guanrong Chen,et al. Generating chaos with a switching piecewise-linear controller. , 2002, Chaos.
[13] George C. Verghese,et al. Nonlinear Phenomena in Power Electronics , 2001 .
[14] Jinhu Lu,et al. Controlling uncertain Lü system using linear feedback , 2003 .
[15] Somnath Maity,et al. Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation. , 2006, Chaos.
[16] James A. Yorke,et al. Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .
[17] Ahmed S. Elwakil,et al. New chaos generators , 1997 .
[18] S. Kolyada,et al. On dynamics of triangular maps of the square , 1992, Ergodic Theory and Dynamical Systems.
[19] Leon O. Chua,et al. Cycles of Chaotic Intervals in a Time-delayed Chua's Circuit , 1993, Chua's Circuit.
[20] Soumitro Banerjee,et al. Robust Chaos , 1998, chao-dyn/9803001.
[21] Erik Mosekilde,et al. Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .
[22] Ott,et al. Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[23] Laura Gardini,et al. Border collision bifurcations in one-dimensional linear-hyperbolic maps , 2010, Math. Comput. Simul..
[24] Erik Mosekilde,et al. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems: Applications to Power Converters, Relay and Pulse-Width Modulated Control Systems, and Human Decision-Making Behavior , 2003 .
[25] Guanrong Chen. Controlling Chaos and Bifurcations in Engineering Systems , 1999 .
[26] Wolfgang Schwarz,et al. Electronic chaos generators—design and applications , 1995 .
[27] Hiroshi Kawakami,et al. Experimental Realization of Controlling Chaos in the Periodically Switched Nonlinear Circuit , 2004, Int. J. Bifurc. Chaos.
[28] C. Budd,et al. Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .
[29] Pascal Chargé,et al. Border collision bifurcations and chaotic sets in a two-dimensional piecewise linear map , 2011 .
[30] Ahmed S. Elwakil,et al. An equation for Generating Chaos and its monolithic Implementation , 2002, Int. J. Bifurc. Chaos.