A hybrid evolutionary approach for solving the ontology alignment problem

Ontologies are recognized as a fundamental component for enabling interoperability across heterogeneous systems and applications. Indeed, they try to fit a common understanding of concepts in a particular domain of interest to support the exchange of information among people, artificial agents, and distributed applications. Unfortunately, because of human subjectivity, various ontologies related to the same application domain may use different terms for the same meaning or may use the same term to mean different things, raising the so‐called heterogeneity problem. The ontology alignment process tries to solve this semantic gap by individuating a collection of similar entities belonging to different ontologies and enabling a full comprehension among different actors involved in a given knowledge exchanging. However, the complexity of the alignment task, especially for large ontologies, requires an automated and effective support for computing high‐quality alignments. The aim of this paper is to propose a memetic algorithm to perform an efficient matching process capable of computing a suboptimal alignment between two ontologies. As shown by experiments, the memetic approach is more suitable for ontology alignment problem than a classical evolutionary technique such as genetic algorithms. © 2012 Wiley Periodicals, Inc.

[1]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[2]  Gregoris Mentzas,et al.  Knowledge provision with intelligent e‐services , 2007, Int. J. Intell. Syst..

[3]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[4]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[5]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[6]  Giovanni Acampora,et al.  Improving ontology alignment through memetic algorithms , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[7]  Michael R. Genesereth,et al.  Logical foundations of artificial intelligence , 1987 .

[8]  Alun D. Preece,et al.  Ontology Reconciliation , 2004, Handbook on Ontologies.

[9]  Bernd Freisleben,et al.  Memetic Algorithms for the Traveling Salesman Problem , 2002, Complex Syst..

[10]  Jim Smith,et al.  A Memetic Algorithm With Self-Adaptive Local Search: TSP as a case study , 2000, GECCO.

[11]  Daniel Rivero Cebrián,et al.  Soft Computing Methods for Practical Environment Solutions: Techniques and Studies , 2010 .

[12]  Stefanos D. Kollias,et al.  A String Metric for Ontology Alignment , 2005, SEMWEB.

[13]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[14]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[15]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[16]  Kwang Mong Sim,et al.  An Ontology-enhanced Cloud Service Discovery System , 2010 .

[17]  Ismailcem Budak Arpinar,et al.  Ontology-driven Web services composition platform , 2004, Proceedings. IEEE International Conference on e-Commerce Technology, 2004. CEC 2004..

[18]  Ai-Hua Yin,et al.  A new neighborhood structure for the job shop scheduling problem , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[19]  Todd Hughes,et al.  The Semantics of Ontology Alignment , 2004 .

[20]  Dinesh Kumar,et al.  Memetic Algorithms for Feature Selection in Face Recognition , 2008, 2008 Eighth International Conference on Hybrid Intelligent Systems.

[21]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[22]  Marc Ehrig,et al.  Ontology Alignment: Bridging the Semantic Gap , 2006 .

[23]  Babak Bagheri Hariri,et al.  Evolutionary coincidence‐based ontology mapping extraction , 2008, Expert Syst. J. Knowl. Eng..

[24]  Cristian R. Munteanu,et al.  Improving Ontology Alignment through Genetic Algorithms , 2010 .

[25]  Ender Ozcan,et al.  A Brief Review of Memetic Algorithms for Solving Euclidean 2 D Traveling Salesrep Problem , 2004 .

[26]  Jérôme Euzenat,et al.  Specification of a Common Framework for Characterizing Alignment , 2004 .

[27]  Adrian Iftene,et al.  Using a genetic algorithm for optimizing the similarity aggregation step in the process of ontology alignment , 2010, 9th RoEduNet IEEE International Conference.

[28]  Marc Ehrig Ontology Alignment: Bridging the Semantic Gap (Semantic Web and Beyond) , 2006 .

[29]  M. de Rijke,et al.  Fact Discovery in Wikipedia , 2007, IEEE/WIC/ACM International Conference on Web Intelligence (WI'07).

[30]  William E. Winkler,et al.  The State of Record Linkage and Current Research Problems , 1999 .

[31]  Enrique Alba,et al.  Optimizing Ontology Alignments by Using Genetic Algorithms , 2008, NatuReS.

[32]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[33]  Matthew A. Jaro,et al.  Probabilistic linkage of large public health data files. , 1995, Statistics in medicine.

[34]  Changjun Jiang,et al.  GAOM: Genetic Algorithm Based Ontology Matching , 2006, 2006 IEEE Asia-Pacific Conference on Services Computing (APSCC'06).

[35]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[36]  Hani Hagras,et al.  Knowledge structuring to support facet-based ontology visualization , 2010 .

[37]  Gregoris Mentzas,et al.  Knowledge provision with intelligent e-services: Research Articles , 2007 .

[38]  Hani Hagras,et al.  Diet assessment based on type‐2 fuzzy ontology and fuzzy markup language , 2010, Int. J. Intell. Syst..

[39]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[40]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[41]  A. Alkan,et al.  Memetic algorithms for timetabling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[42]  Yew-Soon Ong,et al.  A development platform for Memetic Algorithm design , 2006 .

[43]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[44]  R. Dieng-Kuntz,et al.  A Graph-Based Algorithm for Alignment of OWL Ontologies , 2007, IEEE/WIC/ACM International Conference on Web Intelligence (WI'07).

[45]  Pedro M. Domingos,et al.  Ontology Matching: A Machine Learning Approach , 2004, Handbook on Ontologies.

[46]  Frank S. de Boer,et al.  On dynamically generated ontology translators in agent communication * , 2001, Int. J. Intell. Syst..

[47]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[48]  Angelo Monfroglio,et al.  Hybrid genetic algorithms for timetabling , 1996, Int. J. Intell. Syst..