Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum

Abstract In this review paper, we identify and address key uncertainties related to four local and global controls of Holocene northern peatland carbon stocks and fluxes. First, we provide up-to-date estimates of the current northern peatland area (3.2 M km 2 ) and propose a novel approach to reconstruct changes in the northern peatland area over time (Section 2). Second, we review the key methods and models that have been used to quantify total carbon stocks and methane emissions over time at the hemispheric scale, and offer new research directions to improve these calculations (Section 3). Our main proposed improvement relates to allocating different carbon stock and emission values for each of the two dominant vegetation assemblages (sedge and brown moss-dominated vs. Sphagnum -dominated peat). Third, we discuss and quantify the importance of basin heterogeneity in estimating peat volume at the local scale (Section 4.1). We also highlight the importance of age model selection when reconstructing carbon accumulation rates from a peat core (Section 4.2). Lastly, we introduce the role of biogeomorphological agents such as beaver activity in controlling carbon dynamics (Section 5.1) and review the newest research related to permafrost thaw (Section 5.2) and peat fire (Section 5.3) under climate change. Overall, this review summarizes new information from a broad range of peat-carbon studies, provides novel analysis of hemispheric-scale paleo datasets, and proposes new insights on how to translate peat-core data into carbon fluxes. It also identifies critical data gaps and research priorities, and many ways to consider and address them.

[1]  Tarmo Virtanen,et al.  Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe , 2013 .

[2]  Tim R. Moore,et al.  METHANE EMISSIONS FROM WETLANDS IN THE MIDBOREAL REGION OF NORTHERN ONTARIO, CANADA' , 1993 .

[3]  J. Christen,et al.  Flexible paleoclimate age-depth models using an autoregressive gamma process , 2011 .

[4]  T. Sowers Atmospheric methane isotope records covering the Holocene period , 2010 .

[5]  C. Anderson,et al.  Alteration of hydrogeomorphic processes by invasive beavers in southern South America. , 2017, The Science of the total environment.

[6]  V. Brovkin,et al.  Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis , 2005 .

[7]  V. Brovkin,et al.  Modeling micro-topographic controls on boreal peatland hydrology and methane fluxes , 2015 .

[8]  K. Devito,et al.  Transient peat properties in two pond-peatland complexes in the sub-humid Western Boreal Plain, Canada. , 2008 .

[9]  W. Oechel,et al.  The uncertain climate footprint of wetlands under human pressure , 2015, Proceedings of the National Academy of Sciences.

[10]  J. González-Pérez,et al.  Modification of biomarkers in pyrogenic organic matter during the initial phase of charcoal biodegradation in soils , 2013 .

[11]  M. Garneau,et al.  Late Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: potential and limits of multi-proxy archives. , 2010 .

[12]  E. Gorham Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. , 1991, Ecological applications : a publication of the Ecological Society of America.

[13]  Martial Bernoux,et al.  Soils, a sink for N2O? A review , 2007 .

[14]  M. Blaauw,et al.  Ecohydrological feedbacks confound peat‐based climate reconstructions , 2012 .

[15]  G. MacDonald,et al.  A comparison of radiocarbon ages derived from bulk peat and selected plant macrofossils in basal peat cores from circum-arctic peatlands , 2016 .

[16]  J. Haslett,et al.  A simple monotone process with application to radiocarbon‐dated depth chronologies , 2008 .

[17]  C. Weber Über die Vegetation und Entstehung des Hochmoors von Augstumal im Memeldelta, mit vergleichenden Ausblicken auf andere Hochmoore der Erde , 1902 .

[18]  Victor Brovkin,et al.  A dynamic model of wetland extent and peat accumulation: Results for the Holocene , 2011 .

[19]  S. Finkelstein,et al.  Quantifying Holocene variability in carbon uptake and release since peat initiation in the Hudson Bay Lowlands, Canada , 2014 .

[20]  R. Kelman Wieder,et al.  Boreal Peatland Ecosystems , 2006 .

[21]  M. Apps,et al.  Understanding Holocene peat accumulation pattern of continental fens in western Canada , 2003 .

[22]  K. Manies,et al.  Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands , 2017, Global change biology.

[23]  M. Turetsky,et al.  Historical burn area in western Canadian peatlands and its relationship to fire weather indices , 2004 .

[24]  D. Foster,et al.  Bog development and landform dynamics in central Sweden and south-eastern Labrador, Canada , 1988 .

[25]  A. Miidel,et al.  Holocene buried organic sediments in Estonia , 2006, Proceedings of the Estonian Academy of Sciences. Geology.

[26]  A. Korhola Radiocarbon Evidence for Rates of Lateral Expansion in Raised Mires in Southern Finland , 1994, Quaternary Research.

[27]  J. Lancaster,et al.  Inferring landscape dynamics of bog pools from scaling relationships and spatial patterns , 2002 .

[28]  M. Väliranta,et al.  Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland , 2016 .

[29]  E. Kasischke,et al.  Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska , 2006 .

[30]  S. Bridgham,et al.  Soils of Northern Peatlands: Histosols and Gelisols , 2000 .

[31]  D. Charman,et al.  Holocene peatland carbon dynamics in the circum-Arctic region: An introduction , 2014 .

[32]  Pieter P. Tans,et al.  CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes , 2004 .

[33]  R. Kelman Wieder,et al.  Boreal peatland C fluxes under varying permafrost regimes , 2002 .

[34]  Miriam C. Jones,et al.  Sensitivity of Northern Peatland Carbon Dynamics to Holocene Climate Change , 2013 .

[35]  G. Meyer,et al.  Holocene beaver damming, fluvial geomorphology, and climate in Yellowstone National Park, Wyoming , 2009, Quaternary Research.

[36]  Kathleen A. Donohue,et al.  The Great Whirl: Observations of its seasonal development and interannual variability , 2013 .

[37]  Steve Frolking,et al.  Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions , 2006 .

[38]  E. Kasischke,et al.  Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands , 2011 .

[39]  Shaun A Marcott,et al.  A Reconstruction of Regional and Global Temperature for the Past 11,300 Years , 2013, Science.

[40]  J. Strengbom,et al.  Rapid ecosystem shifts in peatlands: linking plant physiology and succession. , 2010, Ecology.

[41]  D. M. Lawrence,et al.  Climate change and the permafrost carbon feedback , 2014, Nature.

[42]  M. Väliranta,et al.  Effects of permafrost aggradation on peat properties as determined from a pan‐Arctic synthesis of plant macrofossils , 2016 .

[43]  F. Joos,et al.  DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands , 2014 .

[44]  M. Seppälä The origin of palsas , 1986 .

[45]  V. Stolbovoi Carbon in Russian Soils , 2002 .

[46]  H. Sjörs Bogs and Fens in the Hudson Bay Lowlands , 1959 .

[47]  L. Smith,et al.  Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history , 2003 .

[48]  J. Plicht,et al.  Radiocarbon dating of bulk peat samples from raised bogs: non-existence of a previously reported ‘reservoir effect’? , 2004 .

[49]  J. Loisel,et al.  Global peatland dynamics since the Last Glacial Maximum , 2010 .

[50]  F. Clements Scientific Books: Plant Succession. An Analysis of the Development of Vegetation , 2009 .

[51]  D. Lawrence,et al.  Diagnosing Present and Future Permafrost from Climate Models , 2012 .

[52]  W. Lucht,et al.  Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model , 2004 .

[53]  V. Brovkin,et al.  Comparative carbon cycle dynamics of the present and last interglacial , 2016 .

[54]  M. Väliranta,et al.  Climate-related changes in peatland carbon accumulation during the last millennium , 2012 .

[55]  Paul A. Keddy,et al.  Wet and Wonderful: The World's Largest Wetlands are Conservation Priorities , 2009 .

[56]  Robert C. Harriss,et al.  Review and assessment of methane emissions from wetlands , 1993 .

[57]  Recent paludification rates and effects on total ecosystem carbon storage in two boreal peatlands of Northeast European Russia , 2014 .

[58]  E. Post,et al.  Seasons and Life Cycles , 2009, Science.

[59]  Steve Frolking,et al.  Peatlands and Their Role in the Global Carbon Cycle , 2011 .

[60]  R. Hesslein,et al.  Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs) , 1994 .

[61]  E. Wohl,et al.  Using ground penetrating radar to 'unearth' buried beaver dams , 2012 .

[62]  R. Booth,et al.  Hydroclimatic variability drives episodic expansion of a floating peat mat in a North American kettlehole basin. , 2011, Ecology.

[63]  D. Peteet,et al.  Impacts of climate and vegetation change on carbon accumulation in a south-central Alaskan peatland assessed with novel organic geochemical techniques , 2014 .

[64]  J. Loisel,et al.  Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska , 2013 .

[65]  Guido Grosse,et al.  Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps , 2014 .

[66]  L. R. Belyea,et al.  Ecohydrological feedbacks in peatland development: a theoretical modelling study , 2011 .

[67]  W. Niering,et al.  Vegetation change in a topogenic bog following beaver flooding1 , 1993 .

[68]  M. Zobel Autogenic succession in boreal mires — A review , 1988, Folia Geobotanica et Phytotaxonomica.

[69]  P. Keddy,et al.  The World's Largest Wetlands: Ecology and Conservation , 2009 .

[70]  Christopher Bronk Ramsey,et al.  BAYESIAN ANALYSIS OF RADIOCARBON DATES , 2009 .

[71]  D. Vitt,et al.  Disequilibrium response of permafrost in boreal continental western Canada to climate change , 1995 .

[72]  Frank Rosell,et al.  Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems , 2005 .

[73]  W. Schlesinger Carbon Balance in Terrestrial Detritus , 1977 .

[74]  Peter Kuhry,et al.  Development of Sphagnum-dominated peatlands in boreal continental Canada , 1993 .

[75]  T. Guilderson,et al.  Climate and vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska , 2009, Quaternary Research.

[76]  J. Couwenberg,et al.  Towards developing IPCC methane 'emission factors' for peatlands (organic soils). , 2012 .

[77]  S. Finkelstein,et al.  Carbon storage and potential methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation , 2014, Nature Communications.

[78]  R. Fyfe,et al.  The importance of sub‐peat carbon storage as shown by data from Dartmoor, UK , 2014 .

[79]  R. Protz,et al.  Role of the Hudson Bay lowland as a source of atmospheric methane , 1994 .

[80]  R. Wieder,et al.  Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire. , 2003 .

[81]  Corinne Le Quéré,et al.  Carbon and Other Biogeochemical Cycles , 2014 .

[82]  J. Severinghaus,et al.  On the origin and timing of rapid changes in atmospheric methane during the Last Glacial Period , 2000 .

[83]  A. Dyke,et al.  Temporal and spatial aspects of peatland initiation following deglaciation in North America , 2007 .

[84]  Robert J. Naiman,et al.  Alteration of North American streams by beaver , 1988 .

[85]  Håkan Rydin,et al.  Biology of peatlands , 2006 .

[86]  A. Gurnell The hydrogeomorphological e•ects of beaver dam-building activity , 1998 .

[87]  C. Johnston,et al.  Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands , 1995 .

[88]  Steve Frolking,et al.  A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation , 2010 .

[89]  M. Väliranta,et al.  A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation , 2014 .

[90]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[91]  Scott D. Bridgham,et al.  The carbon balance of North American wetlands , 2006, Wetlands.

[92]  M. Coyle,et al.  Drivers of long-term variability in CO 2 net ecosystem exchange in a temperate peatland , 2014 .

[93]  M. Hickman,et al.  The developmental history of peatlands at Muskiki and Marguerite lakes, Alberta , 1989 .

[94]  Andrew Baird,et al.  Upscaling of Peatland‐Atmosphere Fluxes of Methane: Small‐Scale Heterogeneity in Process Rates and the Pitfalls of “Bucket‐and‐Slab” Models , 2013 .

[95]  R. S. Clymo,et al.  The Limits to Peat Bog Growth , 1984 .

[96]  I. Strachan,et al.  Can boreal peatlands with pools be net sinks for CO2? , 2015 .

[97]  Y. Sheng,et al.  Short communication: a new dataset for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region , 2013 .

[98]  Donald I. Siegel,et al.  Surface deformations as indicators of deep ebullition fluxes in a large northern peatland , 2004 .

[99]  J. Plicht,et al.  High precision C-14 dating of Holocene peat deposits : A comparison of Bayesian calibration and wiggle-matching approaches , 2006 .

[100]  Markku Mäukiläu,et al.  Holocene lateral expansion, peat growth and carbon accumulation on Haukkasuo, a raised bog in southeastern Finland , 1997 .

[101]  Victor Brovkin,et al.  CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity , 2001 .

[102]  P. Reimer,et al.  Carbon accumulation in peatlands of West Siberia over the last 2000 years , 2009 .

[103]  Charles Tarnocai,et al.  The effect of climate change on carbon in Canadian peatlands , 2006 .

[104]  R. Mark,et al.  Dynamics of Soil Carbon During Deglaciation of the Laurentide Ice Sheet , 1992, Science.

[105]  H. Duthie,et al.  Postglacial development of a marl and peat complex on the Precambrian Shield of northwestern Ontario , 1991 .

[106]  Richard J. Telford,et al.  All age–depth models are wrong: but how badly? , 2004 .

[107]  Guido Grosse,et al.  Vulnerability of high‐latitude soil organic carbon in North America to disturbance , 2011 .

[108]  P. Hughes,et al.  Mire development across the fen–bog transition on the Teifi floodplain at Tregaron Bog, Ceredigion, Wales, and a comparison with 13 other raised bogs , 2003 .

[109]  Walter E. Dean,et al.  Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods , 1974 .

[110]  P. Crill,et al.  Ecological controls on methane emissions from a Northern Peatland Complex in the zone of discontinuous permafrost, Manitoba, Canada , 1995 .

[111]  D. Vitt,et al.  Development of a peatland complex in boreal western Canada: lateral site expansion and local variability in vegetation succession and long-term peat accumulation , 2003 .

[112]  Jeffrey P. Chanton,et al.  Controls on CH4 emissions from a northern peatland , 1999 .

[113]  A. McGuire,et al.  The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland , 2012, Ecosystems.

[114]  V. Brovkin,et al.  Carbon cycle dynamics during recent interglacials , 2015 .

[115]  F. S. Chapin,et al.  A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch , 2014, Nature.

[116]  Mingkui Cao,et al.  Global carbon exchange and methane emissions from natural wetlands : Application of a process-based model , 1996 .

[117]  E. Maltby,et al.  Carbon dynamics in peatlands and other wetland soils regional and global perspectives , 1993 .

[118]  D. Schwert,et al.  A full‐glacial biota from southeastern Iowa, USA , 1986 .

[119]  J. Waddington,et al.  Groundwater residence time distributions in peatlands: Implications for peat decomposition and accumulation , 2011 .

[120]  S. Frolking,et al.  Evidence for elevated emissions from high‐latitude wetlands contributing to high atmospheric CH4 concentration in the early Holocene , 2013 .

[121]  S. Zoltai Cyclic Development of Permafrost in the Peatlands of Northwestern Alberta, Canada , 1993 .

[122]  Andrew,et al.  CONCEPTS & SYNTHESIS EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY , 2006 .

[123]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[124]  J. Bhatti,et al.  Peat carbon stocks in the southern Mackenzie River Basin: uncertainties revealed in a high‐resolution case study , 2008 .

[125]  Zicheng Yu,et al.  Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. , 2011 .

[126]  A. Rebertus Bogs as Beaver Habitat in North-Central Minnesota , 1986 .

[127]  J. Canadell,et al.  Soil organic carbon pools in the northern circumpolar permafrost region , 2009 .

[128]  Dan K. Thompson,et al.  Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils , 2011 .

[129]  Zicheng Yu Holocene carbon flux histories of the world’s peatlands , 2011 .

[130]  S. Bayley,et al.  Beaver (Castor canadensis) mitigate the effects of climate on the area of open water in boreal wetlands in western Canada , 2008 .

[131]  S. Zoltai,et al.  Perennially Frozen Peatlands in the Western Arctic and Subarctic of Canada , 1975 .

[132]  Victor Brovkin,et al.  CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate , 2000 .

[133]  D. Vitt,et al.  Sphagnum-dominated Peatlands in North America Since the Last Glacial Maximum: Their Occurrence and Extent , 2000 .

[134]  Y. Bergeron,et al.  Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada , 2011 .

[135]  Maarten Blaauw,et al.  Estimation of Age-Depth Relationships , 2012 .

[136]  D. Vitt,et al.  Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene , 2000 .

[137]  C. Johnston Wetland Soil and Landscape Alteration by Beavers , 2000 .

[138]  C. Anderson,et al.  Landscape-level impact and habitat factors associated with invasive beaver distribution in Tierra del Fuego , 2016, Biological Invasions.

[139]  Miriam C. Jones,et al.  Rapid deglacial and early Holocene expansion of peatlands in Alaska , 2010, Proceedings of the National Academy of Sciences.

[140]  C. A. Kaye Early Postglacial Beavers in Southeastern New England , 1962, Science.

[141]  J. Turunen,et al.  The Postglacial Development of Boreal and Subarctic Peatlands , 2006 .

[142]  P. Glaser Raised bogs in eastern North America - regional controls for species richness and floristic assemblages , 1992 .

[143]  P. Crill,et al.  Environmental and physical controls on northern terrestrial methane emissions across permafrost zones , 2013, Global Change Biology.

[144]  B. van Geel,et al.  Dating raised bogs: New aspects of AMS 14C wiggle matching, a reservoir effect and climatic change , 1995 .

[145]  Hans Joosten,et al.  Wise Use of Mires and Peatlands , 2002 .

[146]  K. Chun,et al.  Beaver-mediated methane emission: The effects of population growth in Eurasia and the Americas , 2015, AMBIO.

[147]  V. Brovkin,et al.  Upscaling methane emission hotspots in boreal peatlands , 2016 .

[148]  R. Ruedemann,et al.  BEAVER-DAMS AS GEOLOGIC AGENTS. , 1938, Science.

[149]  L. R. Belyea Nonlinear Dynamics of Peatlands and Potential Feedbacks on the Climate System , 2013 .

[150]  Zicheng Yu Holocene Carbon Accumulation of Fen Peatlands in Boreal Western Canada: A Complex Ecosystem Response to Climate Variation and Disturbance , 2006, Ecosystems.

[151]  D. Cooper,et al.  Beaver assisted river valley formation , 2011 .

[152]  G. Rein,et al.  Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions , 2014 .

[153]  M. Field,et al.  Upper Quaternary peat deposits on the Atlantic inner shelf of the United States , 1979 .

[154]  W. Donahue,et al.  Experimental drying intensifies burning and carbon losses in a northern peatland. , 2011, Nature communications.

[155]  Eric S. Menges,et al.  Patterns of Change in the Carbon Balance of Organic Soil-Wetlands of the Temperate Zone , 1986 .

[156]  A. Ray,et al.  Macrophyte succession in Minnesota beaver ponds , 2001 .

[157]  A. Korhola Initiation of a sloping mire complex in southwestern Finland: Autogenic versus allogenic controls , 1996 .

[158]  F. M. Chambers,et al.  Considerations for the preparation of peat samples for palynology, and for the counting of pollen and non-pollen palynomorphs , 2011 .

[159]  G. Malanson,et al.  Sedimentation rates and patterns in beaver ponds in a mountain environment , 1995 .

[160]  Robert J. Naiman,et al.  The use of a geographic information system to analyze long-term landscape alteration by beaver , 1990, Landscape Ecology.

[161]  R. Booth,et al.  A high-resolution record of late-Holocene moisture variability from a Michigan raised bog, USA , 2003 .

[162]  H. Laudon,et al.  Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C‐fluxes , 2008 .

[163]  J. Chanton,et al.  Plant‐dependent CH4 emission in a subarctic Canadian fen , 1992 .

[164]  Changsheng Li,et al.  Modelling carbon dynamics and response to environmental change along a boreal fen nutrient gradient , 2013 .

[165]  Peter M. Lafleur,et al.  Annual and seasonal variability in evapotranspiration and water table at a shrub‐covered bog in southern Ontario, Canada , 2005 .

[166]  B. Elberling,et al.  A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region , 2013 .

[167]  David L. Verbyla,et al.  Carbon loss from an unprecedented Arctic tundra wildfire , 2011, Nature.

[168]  Inez Y. Fung,et al.  Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources , 1987 .

[169]  G. Hood,et al.  Ecological engineering and aquatic connectivity: a new perspective from beaver‐modified wetlands , 2015 .

[170]  L. R. Belyea Climatic and topographic limits to the abundance of bog pools , 2007 .

[171]  Torbern Tagesson,et al.  Land‐atmosphere exchange of methane from soil thawing to soil freezing in a high‐Arctic wet tundra ecosystem , 2012 .

[172]  M. Woo,et al.  Effects of Beaver Dams on Subarctic Wetland Hydrology , 1990 .

[173]  T. Vinson,et al.  Carbon pools and accumulation in peatlands of the former Soviet Union , 1995 .

[174]  Benjamin Poulter,et al.  Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP) , 2012 .

[175]  M. Väliranta,et al.  The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane , 2010 .

[176]  Marco Caccianiga,et al.  Accelerated thawing of subarctic peatland permafrost over the last 50 years , 2004 .

[177]  Christian Blodau,et al.  Carbon cycling in peatlands A review of processes and controls , 2002 .

[178]  R. Telford,et al.  The intercept is a poor estimate of a calibrated radiocarbon age , 2004 .

[179]  W. Oechel,et al.  Variability in exchange of CO2 across 12 northern peatland and tundra sites , 2009 .

[180]  P. Crill,et al.  CO2 and CH4 flux between a boreal beaver pond and the atmosphere , 1997 .

[181]  Zeno F. Levy,et al.  Stable isotopes of water show deep seasonal recharge in northern bogs and fens , 2014 .

[182]  Fortunat Joos,et al.  Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century , 2012 .

[183]  S. Wofsy,et al.  High sensitivity of peat decomposition to climate change through water-table feedback , 2008 .

[184]  M. Blaauw,et al.  Examining the uncertainties in a ‘tuned and stacked’ peatland water table reconstruction , 2012 .

[185]  Y. Sheng,et al.  Rapid Early Development of Circumarctic Peatlands and Atmospheric CH4 and CO2 Variations , 2006, Science.

[186]  P. Kuhry,et al.  Warming‐induced destabilization of peat plateau/thermokarst lake complexes , 2011 .

[187]  Nigel T. Roulet,et al.  Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: The different responses of bogs and fens , 2014 .

[188]  E. Tuittila,et al.  Peatlands in the Earth's 21st century climate system , 2011 .

[189]  David Bastviken,et al.  Climate-sensitive northern lakes and ponds are critical components of methane release , 2016 .

[190]  Tim R. Moore,et al.  Methane flux: Water table relations in northern wetlands , 1993 .

[191]  Kristopher D. Johnson,et al.  Field information links permafrost carbon to physical vulnerabilities of thawing , 2012 .

[192]  C. Camsell,et al.  The Mackenzie river basin , 1919 .

[193]  Joseph Tyler Milbrath Land-cover change within the peatlands along the Rocky Mountain Front, Montana: 1937-2009 , 2013 .

[194]  F. Hu,et al.  Postglacial development of a Maine bog and paleoenvironmental implications , 1995 .

[195]  J. Canadell,et al.  The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions , 2012 .

[196]  A. Dyke,et al.  Long-term carbon sequestration in North American peatlands , 2012 .

[197]  I. Prentice,et al.  Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes , 2009 .

[198]  C. Westbrook,et al.  Hyporheic Flows Along a Channelled Peatland: Influence of Beaver Dams , 2011 .

[199]  Alasdair Morrison,et al.  Distribution of Canadian Rocky Mountain Wetlands Impacted by Beaver , 2015, Wetlands.

[200]  Ryan A. McManamay,et al.  REGIONAL FRAMEWORKS APPLIED TO HYDROLOGY: CAN LANDSCAPE-BASED FRAMEWORKS CAPTURE THE HYDROLOGIC VARIABILITY? , 2011 .

[201]  Zicheng Yu Northern peatland carbon stocks and dynamics: a review , 2012 .

[202]  F. Chambers,et al.  Constructing deposition chronologies for peat deposits using radiocarbon dating , 2011 .

[203]  P. Crill,et al.  Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic , 2014 .

[204]  D. Vitt,et al.  Functional Characteristics and Indicators of Boreal Peatlands , 2006 .

[205]  H. H. Birks,et al.  Late Wisconsin environments of the Bering Land Bridge , 1997 .

[206]  M. Blaauw Methods and code for 'classical' age-modelling of radiocarbon sequences. , 2010 .

[207]  S. Juutinen,et al.  Development, carbon accumulation, and radiative forcing of a subarctic fen over the Holocene , 2014 .

[208]  Kenji Kawamura,et al.  Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO 2 in the Taylor Dome, Dome C and DML ice cores , 2004 .

[209]  Robert J. Evans,et al.  The disappearance of relict permafrost in boreal north America: Effects on peatland carbon storage and fluxes , 2007 .

[210]  J. Schwander,et al.  Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP , 1993, Nature.

[211]  S. Page,et al.  Global vulnerability of peatlands to fire and carbon loss , 2015 .

[212]  P. Camill,et al.  Climate-vegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada , 2009 .

[213]  T. Lithgow,et al.  Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes , 2014, Nature Communications.

[214]  P. Hughes,et al.  Mire-development pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England , 2000 .

[215]  M. Nilsson,et al.  Resource contrast in patterned peatlands increases along a climatic gradient. , 2010, Ecology.

[216]  A. Viau,et al.  Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years , 2001 .

[217]  I. Strachan,et al.  Effect of open water pools on ecosystem scale surface-atmosphere carbon dioxide exchange in a boreal peatland , 2015, Biogeochemistry.

[218]  C. Johnston Beaver pond effects on carbon storage in soils , 2014 .

[219]  C. Freeman,et al.  Drought-induced carbon loss in peatlands , 2011 .

[220]  Peter Kuhry,et al.  High‐resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic , 2011 .

[221]  L. Slater,et al.  Quantifying landscape morphology influence on peatland lateral expansion using ground‐penetrating radar (GPR) and peat core analysis , 2013 .

[222]  Nicholas John Anderson,et al.  Holocene thermal maximum in the western Arctic (0-180°W) , 2004 .

[223]  Victor Brovkin,et al.  Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER‐2 model , 2002 .

[224]  P. Hughes A reappraisal of the mechanisms leading to ombrotrophy in British raised mires , 2000 .

[225]  H. Faure,et al.  A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction , 1998 .

[226]  J. Lynch,et al.  Changes in Biomass, Aboveground Net Primary Production, and Peat Accumulation following Permafrost Thaw in the Boreal Peatlands of Manitoba, Canada , 2001, Ecosystems.

[227]  P. Richard,et al.  Paléoécologie de la tourbière du lac Malbaie, dans le massif des Laurentides (Québec): évaluation du rôle du climat sur l’accumulation de la tourbe , 2002 .

[228]  P. Keddy,et al.  The World's Largest Wetlands: Introduction: big is beautiful , 2005 .

[229]  Jeffrey R. White,et al.  A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands , 2014, Global change biology.

[230]  Robert J. Naiman,et al.  Ecosystem Alteation of Boreal Forest Streams by Beaver (Castor Canadensis) , 1986 .

[231]  M. Walbridge Plant community composition and surface water chemistry of fen peatlands in West Virginia's Appalachian Plateau , 1994 .

[232]  T. Moore,et al.  Low boreal wetlands as a source of atmospheric methane , 1992 .

[233]  D. Foster,et al.  Role of Ecosystem Development and Climate Change in Bog Formation in Central Sweden , 1990 .

[234]  Scott C. Neubauer,et al.  On the challenges of modeling the net radiative forcing of wetlands: reconsidering Mitsch et al. 2013 , 2014, Landscape Ecology.

[235]  D. Foster,et al.  Toward an Integrated Model for Raised‐Bog Development: Theory and Field Evidence , 1995 .

[236]  Terry V. Callaghan,et al.  Carbon respiration from subsurface peat accelerated by climate warming in the subarctic , 2009, Nature.

[237]  C. Johnston,et al.  Rapid Surface Water Volume Estimations in Beaver Ponds , 2016 .

[238]  Peter Kuhry,et al.  Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain , 2012 .

[239]  J. L. Riley Flora of the Hudson Bay Lowland and its postglacial origins. , 2003 .

[240]  Y. Sheng,et al.  A high‐resolution GIS‐based inventory of the west Siberian peat carbon pool , 2004 .

[241]  T. Moore,et al.  Methane fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland, Canada , 2007 .

[242]  J. Schmitt,et al.  Changing boreal methane sources and constant biomass burning during the last termination , 2008, Nature.

[243]  P. Richard,et al.  Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland , 2007 .

[244]  Cherie J. Westbrook,et al.  Beaver dams and overbank floods influence groundwater–surface water interactions of a Rocky Mountain riparian area , 2006 .

[245]  M. Turetsky,et al.  Disturbance in Boreal Peatlands , 2006 .

[246]  M. Turetsky,et al.  Conceptual frameworks in peatland ecohydrology: looking beyond the two‐layered (acrotelm–catotelm) model , 2011 .