FlavorDB: a database of flavor molecules

Abstract Flavor is an expression of olfactory and gustatory sensations experienced through a multitude of chemical processes triggered by molecules. Beyond their key role in defining taste and smell, flavor molecules also regulate metabolic processes with consequences to health. Such molecules present in natural sources have been an integral part of human history with limited success in attempts to create synthetic alternatives. Given their utility in various spheres of life such as food and fragrances, it is valuable to have a repository of flavor molecules, their natural sources, physicochemical properties, and sensory responses. FlavorDB (http://cosylab.iiitd.edu.in/flavordb) comprises of 25,595 flavor molecules representing an array of tastes and odors. Among these 2254 molecules are associated with 936 natural ingredients belonging to 34 categories. The dynamic, user-friendly interface of the resource facilitates exploration of flavor molecules for divergent applications: finding molecules matching a desired flavor or structure; exploring molecules of an ingredient; discovering novel food pairings; finding the molecular essence of food ingredients; associating chemical features with a flavor and more. Data-driven studies based on FlavorDB can pave the way for an improved understanding of flavor mechanisms.

[1]  M. L. Shankaranarayana,et al.  Volatile polysulphides of asafoetida. , 1984 .

[2]  S. Arctander,et al.  Perfume and Flavor Materials of Natural Origin , 1994 .

[3]  Albert-László Barabási,et al.  Flavor network and the principles of food pairing , 2011, Scientific reports.

[4]  Masanori Arita,et al.  Databases on food phytochemicals and their health-promoting effects. , 2011, Journal of agricultural and food chemistry.

[5]  A. Macleod,et al.  Aroma volatiles of aubergine (Solanum melongena) , 1983 .

[6]  Guido Flamini,et al.  Constituents of Cajanus Cajan (L.) Millsp., Moringa Oleifera Lam., Heliotropium Indicum L. and Bidens Pilosa L. from Nigeria , 2009, Natural product communications.

[7]  Robert L. Smith,et al.  GRAS flavoring substances 25 , 2001 .

[8]  Guido Flamini,et al.  Essential Oils from the Leaves of Six Medicinal Plants of Nigeria # , 2013, Natural product communications.

[9]  F. Dayan,et al.  Phytotoxic and fungitoxic activities of the essential oil of kenaf (Hibiscus cannabinus L.) leaves and its composition. , 2001, Journal of agricultural and food chemistry.

[10]  Ole G Mouritsen,et al.  The science of taste , 2015, Flavour.

[11]  Zhang Xiaoming,et al.  Comparison of Volatile Profile of Moringa oleifera Leaves from Rwanda and China Using HS-SPME , 2011 .

[12]  I. Goldman,et al.  Geosmin (2β,6α-dimethylbicyclo[4.4.0]decan-1β-ol) production associated with Beta vulgaris ssp. vulgaris is cultivar specific. , 2014, Journal of agricultural and food chemistry.

[13]  S. Kays,et al.  Comparison of odor-active compounds from six distinctly different rice flavor types. , 2008, Journal of agricultural and food chemistry.

[14]  K. Javidnia,et al.  Chemical Composition of the Fixed and Volatile Oils of Nigella sativa L. from Iran , 2003, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[15]  David S. Wishart,et al.  Phenol-Explorer: an online comprehensive database on polyphenol contents in foods , 2010, Database J. Biol. Databases Curation.

[16]  Jorge A. Pino,et al.  Leaf Oil of Tamarindus indica L. , 2002 .

[17]  Charles Spence,et al.  A touch of gastronomy , 2013, Flavour.

[18]  R. Rosario-Cruz,et al.  Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) , 2011, Parasitology Research.

[19]  G. Burdock,et al.  Fenaroli's Handbook of Flavor Ingredients , 1997 .

[20]  Hervé This,et al.  Molecular gastronomy , 2002, Angewandte Chemie.

[21]  Ganesh Bagler,et al.  Analysis of Food Pairing in Regional Cuisines of India , 2015, PloS one.

[22]  L. Buck,et al.  Combinatorial Receptor Codes for Odors , 1999, Cell.

[23]  Alessandra Braca,et al.  Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. , 2008, Fitoterapia.

[24]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[25]  D. D. Jones,et al.  VOLATILE CONSTITUENTS OF VINEGAR. I. A SURVEY OF SOME COMMERCIALLY AVAILABLE MALT VINEGARS , 1969 .

[26]  David S. Wishart,et al.  Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content , 2013, Database J. Biol. Databases Curation.

[27]  Ron Porat,et al.  The flavor of pomegranate fruit: a review. , 2014, Journal of the science of food and agriculture.

[28]  B. Villalon,et al.  VOLATILE COMPONENTS AND PUNGENCY IN FRESH AND PROCESSED JALAPENO PEPPERS , 1978 .

[29]  Keng-Chong Wong,et al.  Volatile constituents of Taro (Colocasia esculenta (L.) Schott) , 1998 .

[30]  Werner Grosch,et al.  Flavour and off-flavour compounds of black and white pepper (Piper nigrum L.) I. Evaluation of potent odorants of black pepper by dilution and concentration techniques , 1999 .

[31]  Richa Gupta,et al.  Division of labor among Mycobacterium smegmatis RNase H enzymes: RNase H1 activity of RnhA or RnhC is essential for growth whereas RnhB and RnhA guard against killing by hydrogen peroxide in stationary phase , 2016, Nucleic acids research.

[32]  Jun Tian,et al.  Comparative analysis of essential oil components and antioxidant activity of extracts of Nelumbo nucifera from various areas of China. , 2010, Journal of agricultural and food chemistry.

[33]  Jessica Ahmed,et al.  SuperSweet—a resource on natural and artificial sweetening agents , 2010, Nucleic Acids Res..

[34]  Philip S. Portoghese,et al.  GRAS flavoring substances 18 , 1996 .

[35]  J. Pereira,et al.  Evolution of Brassica rapa var. rapa L. volatile composition by HS-SPME and GC/IT-MS , 2009 .

[36]  Charles Spence,et al.  NEUROGASTRONOMY How the brain creates flavor and why it matters , 2012 .

[37]  Mohammed Yusuf,et al.  Chemical composition of the leaf essential oils of Murraya koenigii (L.) Spreng and Murraya paniculata (L.) Jack , 2008 .

[38]  Regula Näf,et al.  The volatile constituents of extracts of cooked spinach leaves (Spinacia oleracea L.) , 2000 .

[39]  Suchandra Chatterjee,et al.  Analysis of free and glycosidically bound compounds of ash gourd (Benincasa hispida): Identification of key odorants , 2010 .

[40]  Gordon M. Shepherd,et al.  Neurogastronomy: How the Brain Creates Flavor and Why It Matters , 2011 .

[41]  Joseph Casanova,et al.  Isothymol in Ajowan Essential Oil , 2010, Natural product communications.

[42]  Hubert Richard,et al.  Volatile Compounds in Leek and Asafoetida , 1991 .

[43]  Amit Dhurandhar,et al.  Predicting human olfactory perception from chemical features of odor molecules , 2017, Science.

[44]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[45]  V. Jadhav,et al.  GAS CHROMATOGRAPHY MASS SPECTROSCOPIC (GCMS) ANALYSIS OF SOME BIOACTIVE COMPOUNDS FORM FIVE MEDICINALLY RELEVANT WILD EDIBLE PLANTS. , 2013 .

[46]  Terry E. Acree,et al.  Flavornet: A database of aroma compounds based on odor potency in natural products , 1998 .

[47]  Gianni Panagiotou,et al.  NutriChem: a systems chemical biology resource to explore the medicinal value of plant-based foods , 2014, Nucleic Acids Res..

[48]  Susan Budavari,et al.  The Merck index : an encyclopedia of chemicals, drugs, and biologicals , 1983 .

[49]  N. Ojeh,et al.  Antioxidant Activity of Methanol Extract of Pandanus Fasciularis Lam. , 2011 .

[50]  Chinatsu Kasamatsu,et al.  Cognitive structures based on culinary success factors in the development of new dishes by Japanese chefs at fine dining restaurants , 2015, Flavour.

[51]  I. C. Munro,et al.  Recent progress in the consideration of flavoring ingredients under the Food Additives Amendment. 15. GRAS substances. , 1990 .

[52]  Kathrin Ohla,et al.  The genetics and neuroscience of flavour , 2013, Flavour.

[53]  Norbert Haider,et al.  Functionality Pattern Matching as an Efficient Complementary Structure/Reaction Search Tool: an Open-Source Approach , 2010, Molecules.

[54]  A. Kelly,et al.  Sensory characteristics and related volatile flavor compound profiles of different types of whey. , 2005, Journal of dairy science.

[55]  Sebastian E. Ahnert,et al.  Flavor network and the principles of food , 2011 .

[56]  William J. Waddell,et al.  Gras flavoring substances , 2000 .

[57]  Jing,et al.  Components of Volatile Oil from Water-caltrop and Their Anti-tumor Effect in vitro , 2009 .

[58]  Suchandra Chatterjee,et al.  Free and glycosidically bound volatiles of some common Indian vegetables. , 2009 .

[59]  Anat Levit,et al.  BitterDB: a database of bitter compounds , 2011, Nucleic Acids Res..

[60]  Evan Bolton,et al.  PubChem3D: conformer ensemble accuracy , 2013, Journal of Cheminformatics.

[61]  Andrew Wilkinson Compendium of Chemical Terminology , 1997 .

[62]  Gerhard Buchbauer,et al.  Analysis of volatile compounds and triglycerides of seed oils extracted from different poppy varieties (Papaver somniferum L.). , 2005, Journal of agricultural and food chemistry.

[63]  Peter Ertl,et al.  JSME: a free molecule editor in JavaScript , 2013, Journal of Cheminformatics.

[64]  Ulrike Schmidt,et al.  SuperScent—a database of flavors and scents , 2008, Nucleic Acids Res..

[65]  Juita,et al.  Identification and Quantitation of Volatile Organic Compounds from Oxidation of Linseed Oil , 2012 .

[66]  Marián Boguñá,et al.  Extracting the multiscale backbone of complex weighted networks , 2009, Proceedings of the National Academy of Sciences.

[67]  V. Gold Compendium of chemical terminology , 1987 .

[68]  B. L. Oser,et al.  Recent progress in the consideration of flavoring ingredients under the Food Additives Amendment. 4. gRAS (generally recognized as safe) substances , 1970 .