Conducting-Polymer-Based Chemical Sensors: Transduction Mechanisms

Conducting organic polymers show great promise as sensory materials. The transport of charge in these systems imparts the ability to attain high sensitivity to analytes of interest. This contributi...

[1]  K. Tamao,et al.  Dibenzoborole-Containing π-Electron Systems: Remarkable Fluorescence Change Based on the “On/Off” Control of the pπ−π* Conjugation , 2002 .

[2]  T. Swager,et al.  Toward Isolated Molecular Wires: A pH-Responsive Canopied Polypyrrole , 2005 .

[3]  T. Swager,et al.  Chemoresistive Gas-Phase Nitric Oxide Sensing with Cobalt-Containing Conducting Metallopolymers , 2006 .

[4]  M. Ikeda,et al.  Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity and selectivity. , 2001, Accounts of chemical research.

[5]  M. Ikeda,et al.  Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. , 2001, Accounts of chemical research.

[6]  T. Swager,et al.  Electroactivity Enhancement by Redox Matching in Cobalt Salen–Based Conducting Polymers , 1998 .

[7]  G. Zotti,et al.  Evolution of in situ conductivity of polythiophene deposits by potential cycling , 1990 .

[8]  J. Simonet,et al.  Boronate-functionalized polypyrrole as a new fluoride sensing material , 1999 .

[9]  T. Swager,et al.  Allosteric Fluoride Anion Recognition by a Doubly Strapped Porphyrin , 2001 .

[10]  F. Jäkle Lewis acidic organoboron polymers , 2006 .

[11]  M. Knorr,et al.  Electrosynthesis of structured derivated polythiophenes: Application to electrodeposition of latex particles on these substrates , 2005 .

[12]  T. Swager,et al.  Conducting Polymetallorotaxanes: Metal Ion Mediated Enhancements in Conductivity and Charge Localization , 1997 .

[13]  T. Swager,et al.  A proton-doped calix[4]arene-based conducting polymer. , 2003, Journal of the American Chemical Society.

[14]  P. Audebert,et al.  Synthesis, Electrochemical Properties, and Molecular Computations of New Tris(thienyl)methyl Cations , 1998 .

[15]  P. Wadgaonkar,et al.  Envirocat EPZGR as a New Heterogenous Catalyst for the Efficient Synthesis of Conjugated Nitroolefins , 1996 .

[16]  Qin Zhou,et al.  Fluorescent Chemosensors Based on Energy Migration in Conjugated Polymers: The Molecular Wire Approach to Increased Sensitivity , 1995 .

[17]  T. Swager,et al.  Aromaticity in Tropone-Containing Polythiophene , 2006 .

[18]  J. Zyss,et al.  New octupolar star-shaped strucures for quadratic nonlinear optics , 1999 .

[19]  S. Shinkai,et al.  Selective fluoride recognition with ferroceneboronic acid , 1995 .

[20]  T. Swager,et al.  Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects , 1998 .

[21]  T. Swager,et al.  CONDUCTING POLYMETALLOROTAXANES : A SUPRAMOLECULAR APPROACH TO TRANSITION METAL ION SENSORS , 1996 .

[22]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[23]  Michael J. Marsella,et al.  Design of chemoresistive sensory materials: polythiophene-based pseudopolyrotaxanes , 1995 .

[24]  F. Jäkle,et al.  A family of main-chain polymeric Lewis acids: synthesis and fluorescent sensing properties of boron-modified polythiophenes. , 2005, Journal of the American Chemical Society.

[25]  T. Swager,et al.  CONDUCTING PSEUDOPOLYROTAXANES : A CHEMORESISTIVE RESPONSE VIA MOLECULAR RECOGNITION , 1994 .

[26]  H. Anderson,et al.  Insulated molecular wires. , 2007, Angewandte Chemie.

[27]  T. Swager,et al.  Charge-specific interactions in segmented conducting polymers: an approach to selective ionoresistive responses. , 2004, Angewandte Chemie.

[28]  J. Roncali Synthetic Principles for Bandgap Control in Linear pi-Conjugated Systems. , 1997, Chemical reviews.

[29]  M. Kertész,et al.  Conjugated polymers and aromaticity. , 2005, Chemical reviews.

[30]  Qin Zhou,et al.  Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers , 1995 .

[31]  K. Tamao,et al.  Colorimetric fluoride ion sensing by boron-containing pi-electron systems. , 2001, Journal of the American Chemical Society.

[32]  Michael J. Marsella,et al.  Ionoresistivity as a highly sensitive sensory probe: investigations of polythiophenes functionalized with calix[4]arene-based ion receptors , 1995 .

[33]  T. Swager,et al.  Transition Metals in Polymeric π‐Conjugated Organic Frameworks , 2007 .

[34]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[35]  G. Zotti,et al.  A simple two-band electrode for in situ conductivity measurements of polyconjugated conducting polymers , 1989 .

[36]  T. Swager,et al.  The Molecular Wire Approach to Sensory Signal Amplification , 1998 .

[37]  S. W. Thomas,et al.  Chemical sensors based on amplifying fluorescent conjugated polymers. , 2007, Chemical reviews.

[38]  C. Niemeyer,et al.  Crown Ethers with a Lewis Acidic Center: A New Class of Heterotopic Host Molecules , 1991 .

[39]  A. McNeil,et al.  Conjugated polymers in an arene sandwich. , 2006, Journal of the American Chemical Society.

[40]  David Ofer,et al.  Potential dependence of the conductivity of highly oxidized polythiophenes, polypyrroles, and polyaniline: Finite windows of high conductivity , 1990 .

[41]  T. Swager,et al.  A fluorescent self-amplifying wavelength-responsive sensory polymer for fluoride ions. , 2003, Angewandte Chemie.

[42]  Dahui Zhao,et al.  Sensory Responses in Solution vs Solid State: A Fluorescence Quenching Study of Poly(iptycenebutadiynylene)s , 2005 .

[43]  H. White,et al.  CHEMICAL DERIVATIZATION OF MICROELECTRODE ARRAYS BY OXIDATION OF PYRROLE AND N-METHYLPYRROLE: FABRICATION OF MOLECULE-BASED ELECTRONIC DEVICES. , 1984 .

[44]  T. Swager,et al.  Conducting metallopolymers: the roles of molecular architecture and redox matching. , 2005, Chemical communications.

[45]  T. Swager,et al.  Electrocatalytic conducting polymers: Oxygen reduction by a polythiophene-cobalt salen hybrid , 2000 .

[46]  T. Swager,et al.  POLYTHIOPHENE HYBRIDS OF TRANSITION-METAL BIS(SALICYLIDENIMINE)S : CORRELATION BETWEEN STRUCTURE AND ELECTRONIC PROPERTIES , 1999 .

[47]  T. Swager,et al.  Three-Strand Conducting Ladder Polymers: Two-Step Electropolymerization of Metallorotaxanes. , 2000, Angewandte Chemie.

[48]  G. Zotti Electrochemical sensors based on polyconjugated conducting polymers , 1992 .

[49]  Y. Chujo,et al.  π-Conjugated Organoboron Polymer as an Anion Sensor , 2002 .

[50]  T. Swager,et al.  A reversible resistivity-based nitric oxide sensor. , 2002, Chemical Communications.

[51]  T. Swager,et al.  Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials , 1998 .

[52]  Michael J. Marsella,et al.  Designing conducting polymer-based sensors: selective ionochromic response in crown ether-containing polythiophenes , 1993 .

[53]  T. Swager,et al.  Defining space around conducting polymers: reversible protonic doping of a canopied polypyrrole. , 2003, Journal of the American Chemical Society.

[54]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[55]  M. Márquez,et al.  Materials chemistry approach to anion-sensor design , 2004 .