Comparison of random number generators via Fourier transform

Abstract. In this paper, we investigate simple yet practical schemes to generate random variates from the characteristic function of any continuous distribution. We discuss the generation of non-uniform random variates from a uniform random number generator. The inverse of the cumulative distribution function is derived from its characteristic function via the fast Fourier transform. We conduct several numerical experiments to assess the accuracy and efficiency of the schemes.

[1]  E. Eberlein,et al.  The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures , 2002 .

[2]  Svetlozar T. Rachev,et al.  Calibrated FFT-based density approximations for alpha , 2006, Comput. Stat. Data Anal..

[3]  J. Gil-Pelaez Note on the inversion theorem , 1951 .

[4]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[5]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[6]  Robert L. Brown An Accelerating Quasi-Monte Carlo Method for Option Pricing Under the Generalized Hyperbolic Lévy Process , 2008 .

[7]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[8]  Leonidas Sakalauskas,et al.  A STUDY OF STABLE MODELS OF STOCK MARKETS , 2006 .

[9]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[10]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[11]  Ken Seng Tan,et al.  Dimension reduction approach to simulating exotic options in a Meixner Levy market , 2009 .

[12]  W. Gander,et al.  Adaptive Quadrature—Revisited , 2000 .

[13]  Frank J. Fabozzi,et al.  Financial Models with Levy Processes and Volatility Clustering , 2011 .

[14]  Wolfgang Hörmann,et al.  Continuous random variate generation by fast numerical inversion , 2003, TOMC.

[15]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[16]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[17]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[18]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  P. Hughett Error Bounds for Numerical Inversion of a Probability Characteristic Function , 1998 .

[20]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[21]  Bruce W. Turnbull,et al.  Obtaining Distribution Functions by Numerical Inversion of Characteristic Functions with Applications , 1995 .

[22]  Wolfgang Hörmann,et al.  Automatic Nonuniform Random Variate Generation , 2011 .

[23]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  R. Lord,et al.  A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options Under Levy Processes , 2007 .

[25]  Sergei Levendorskii,et al.  Feller processes of normal inverse Gaussian type , 2001 .

[26]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[27]  Nikolai Leonenko,et al.  Simulation of Lévy-driven Ornstein-Uhlenbeck processes with given marginal distribution , 2009, Comput. Stat. Data Anal..

[28]  Wolfgang Hörmann,et al.  The correlated random walk with boundaries: A combinatorial solution , 2000 .