Serine/threonine kinase TBK1 promotes cholangiocarcinoma progression via direct regulation of β-catenin

[1]  R. Schwabe,et al.  Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications , 2022, Gut.

[2]  X. Tong,et al.  Simvastatin rescues memory and granule cell maturation through the Wnt/β-catenin signaling pathway in a mouse model of Alzheimer’s disease , 2022, Cell Death & Disease.

[3]  N. Seidah,et al.  Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance , 2022, Nature communications.

[4]  Wei Zhao,et al.  METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m6A-YTHDF2-dependent manner , 2022, Oncogene.

[5]  T. Nagata,et al.  DNA/RNA heteroduplex oligonucleotide technology for regulating lymphocytes in vivo , 2021, Nature Communications.

[6]  K. Hashimoto,et al.  Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine , 2021, Molecular Psychiatry.

[7]  R. Shroff,et al.  Current and emerging therapies for advanced biliary tract cancers. , 2021, The lancet. Gastroenterology & hepatology.

[8]  W. Wang,et al.  A PLCB1–PI3K–AKT Signaling Axis Activates EMT to Promote Cholangiocarcinoma Progression , 2021, Cancer Research.

[9]  J. Vandesompele,et al.  The long non-coding RNA SAMMSON is essential for uveal melanoma cell survival , 2021, Oncogene.

[10]  B. Teh,et al.  Cholangiocarcinoma , 2021, Nature Reviews Disease Primers.

[11]  F. Rigo,et al.  Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–brain barrier and knock down genes in the rodent CNS , 2021, Nature Biotechnology.

[12]  J. Smaill,et al.  TANK-binding kinase 1 (TBK1): an emerging therapeutic target for drug discovery. , 2021, Drug discovery today.

[13]  R. Schwabe,et al.  Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. , 2021, Cancer cell.

[14]  Lu He,et al.  Myofibroblast‐Specific Msi2 Knockout Inhibits HCC Progression in a Mouse Model , 2021, Hepatology.

[15]  Qiang Li,et al.  TANK-Binding Kinase 1 (TBK1) Serves as a Potential Target for Hepatocellular Carcinoma by Enhancing Tumor Immune Infiltration , 2021, Frontiers in Immunology.

[16]  K. Sawanyawisuth,et al.  Epithelial–Mesenchymal Transition in Liver Fluke-Induced Cholangiocarcinoma , 2021, Cancers.

[17]  Shanshan Wang,et al.  CCL16 maintains stem cell-like properties in breast cancer by activating CCR2/GSK3β/β-catenin/OCT4 axis , 2021, Theranostics.

[18]  Nan Yao,et al.  Intrahepatic cholangiocarcinoma induced M2-polarized tumor-associated macrophages facilitate tumor growth and invasiveness , 2020, Cancer cell international.

[19]  M. Ohtsuka,et al.  LGR5 induces β‐catenin activation and augments tumour progression by activating STAT3 in human intrahepatic cholangiocarcinoma , 2020, Liver international : official journal of the International Association for the Study of the Liver.

[20]  Lu He,et al.  EFTUD2 maintains the survival of tumor cells and promotes hepatocellular carcinoma progression via the activation of STAT3 , 2020, Cell Death & Disease.

[21]  X. Deng,et al.  GATA6 promotes epithelial-mesenchymal transition and metastasis through MUC1/β-catenin pathway in cholangiocarcinoma , 2020, Cell Death & Disease.

[22]  A. Rustgi,et al.  EMT, MET, Plasticity, and Tumor Metastasis. , 2020, Trends in cell biology.

[23]  G. Gores,et al.  Cholangiocarcinoma 2020: the next horizon in mechanisms and management , 2020, Nature Reviews Gastroenterology & Hepatology.

[24]  A. Lowy,et al.  Glutamine depletion regulates Slug to promote EMT and metastasis in pancreatic cancer , 2020, The Journal of experimental medicine.

[25]  C. Lebrilla,et al.  Metastasis of cholangiocarcinoma is promoted by extended high-mannose glycans , 2020, Proceedings of the National Academy of Sciences.

[26]  E. Van Cutsem,et al.  Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. , 2020, The Lancet. Oncology.

[27]  T. Pawlik,et al.  Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. , 2020, Journal of hepatology.

[28]  E. Brogi,et al.  MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression , 2020, Nature Communications.

[29]  G. Gores,et al.  Systemic therapies for intrahepatic cholangiocarcinoma. , 2020, Journal of hepatology.

[30]  T. Pawlik,et al.  Number and Station of Lymph Node Metastasis After Curative-intent Resection of Intrahepatic Cholangiocarcinoma Impact Prognosis , 2020, Annals of surgery.

[31]  A. Jemal,et al.  Cancer statistics, 2020 , 2020, CA: a cancer journal for clinicians.

[32]  A. Lièvre,et al.  Radioembolization Plus Chemotherapy for First-line Treatment of Locally Advanced Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. , 2020, JAMA oncology.

[33]  Laura E. Herring,et al.  TBK1 is a Synthetic Lethal Target in Cancer with VHL Loss. , 2019, Cancer discovery.

[34]  Shao-Cong Sun,et al.  TBKBP1 and TBK1 form a growth factor signaling axis mediating immunosuppression and tumorigenesis , 2019, Nature Cell Biology.

[35]  Kefei Yuan,et al.  TXNDC12 promotes EMT and metastasis of hepatocellular carcinoma cells via activation of β-catenin , 2019, Cell Death & Differentiation.

[36]  Li Zhao,et al.  ACLY facilitates colon cancer cell metastasis by CTNNB1 , 2019, Journal of Experimental & Clinical Cancer Research.

[37]  R. Smits,et al.  Wnt/β-Catenin Signaling in Liver Cancers , 2019, Cancers.

[38]  Yibin Kang,et al.  Context-dependent EMT programs in cancer metastasis , 2019, The Journal of experimental medicine.

[39]  A. Hamidi,et al.  TANK‐binding kinase 1 is a mediator of platelet‐induced EMT in mammary carcinoma cells , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[40]  C. Corciulo,et al.  Adenosine A2A receptor (A2AR) activation triggers Akt signaling and enhances nuclear localization of β‐catenin in osteoblasts , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[41]  C. Blanpain,et al.  EMT Transition States during Tumor Progression and Metastasis. , 2019, Trends in cell biology.

[42]  R. Brekken,et al.  Axl-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer , 2018, bioRxiv.

[43]  P. Dhawan,et al.  Tight junction proteins in gastrointestinal and liver disease , 2018, Gut.

[44]  Z. Ji,et al.  Aphthous ulcer drug inhibits prostate tumor metastasis by targeting IKKɛ/TBK1/NF-κB signaling , 2018, Theranostics.

[45]  R. Brekken,et al.  Assessment of TANK-binding kinase 1 as a therapeutic target in cancer , 2018, Journal of Cell Communication and Signaling.

[46]  T. Matysiak-Budnik,et al.  Gemcitabine plus platinum-based chemotherapy for first-line treatment of hepatocholangiocarcinoma: an AGEO French multicentre retrospective study , 2017, British Journal of Cancer.

[47]  Yan Liu,et al.  aPKC‐ι/P‐Sp1/Snail signaling induces epithelial–mesenchymal transition and immunosuppression in cholangiocarcinoma , 2017, Hepatology.

[48]  M. Underwood,et al.  FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer , 2017, Molecular Cancer.

[49]  K. Boberg,et al.  Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA) , 2016, Nature Reviews Gastroenterology &Hepatology.

[50]  V. LeBleu,et al.  EMT Program is Dispensable for Metastasis but Induces Chemoresistance in Pancreatic Cancer , 2015, Nature.

[51]  J. Manautou,et al.  Adverse Drug Reactions and Toxicity of the Food and Drug Administration–Approved Antisense Oligonucleotide Drugs , 2022, Drug Metabolism and Disposition.

[52]  S. Curley,et al.  Biliary tract cancer. , 1997, Cancer treatment and research.