A Generalization of Entanglement to Convex Operational Theories: Entanglement Relative to a Subspace of Observables

We define what it means for a state in a convex cone of states on a space of observables to be generalized-entangled relative to a subspace of the observables, in a general ordered linear spaces framework for operational theories. This extends the notion of ordinary entanglement in quantum information theory to a much more general framework. Some important special cases are described, in which the distinguished observables are subspaces of the observables of a quantum system, leading to results like the identification of generalized unentangled states with Lie-group-theoretic coherent states when the special observables form an irreducibly represented Lie algebra. Some open problems, including that of generalizing the semigroup of local operations with classical communication to the convex cones case, are discussed.

[1]  R. Delbourgo,et al.  Maximum weight vectors possess minimal uncertainty , 1977 .

[2]  Physical Review , 1965, Nature.

[3]  David Moore,et al.  Current Research in Operational Quantum Logic , 2000 .

[4]  Ordered Linear Spaces,et al.  Foundations of quantum mechanics and ordered linear spaces : Advanced Study Institute, Marburg 1973 , 1974 .

[5]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[6]  Alexander Wilce,et al.  Tensor products in generalized measure theory , 1992 .

[7]  R. Phelps,et al.  Tensor products of compact convex sets. , 1969 .

[8]  G. Illies,et al.  Communications in Mathematical Physics , 2004 .

[9]  M. Rosenlicht Introduction to Analysis , 1970 .

[10]  Lorenza Viola,et al.  A subsystem-independent generalization of entanglement. , 2004, Physical review letters.

[11]  Akademii︠a︡ medit︠s︡inskikh nauk Sssr Journal of physics , 1939 .

[12]  C D Batista,et al.  Generalized Jordan-Wigner transformations. , 2001, Physical review letters.

[13]  M. Zwaan An introduction to hilbert space , 1990 .

[14]  Peter D. Jarvis,et al.  Reports on Mathematical Physics , 2006 .

[15]  G. Vidal On the characterization of entanglement , 1998 .

[16]  P. Zanardi Quantum entanglement in fermionic lattices , 2002 .

[17]  E. Beltrametti,et al.  Effect algebras and statistical physical theories , 1997 .

[18]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[19]  E. Knill,et al.  Generalizations of entanglement based on coherent states and convex sets , 2002, quant-ph/0207149.

[20]  Bernard Kripke Introduction to Analysis , 1968 .

[21]  G. Ludwig An axiomatic basis for quantum mechanics , 1985 .

[22]  R. Gilmore,et al.  Coherent states: Theory and some Applications , 1990 .

[23]  J. Hilgert,et al.  Lie groups, convex cones, and semigroups , 1989 .

[24]  G. Ortiz,et al.  Unveiling order behind complexity: Coexistence of ferromagnetism and Bose-Einstein condensation , 2002, cond-mat/0207073.

[25]  L. Gurvits Quantum Matching Theory (with new complexity theoretic, combinatorial and topological insights on the nature of the Quantum Entanglement) , 2002, quant-ph/0201022.

[26]  October I Physical Review Letters , 2022 .

[27]  W Dür,et al.  Optimal conversion of nonlocal unitary operations. , 2002, Physical review letters.

[28]  A. Paul,et al.  Pacific Journal of Mathematics , 1999 .

[29]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[30]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[31]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  Wojciech Daniel Book Review: States, effects and operations. Fundamental notions of quantum theory. Karl Kraus Lectures in Mathematical Physics at the University of Texas at Austin. Lecture Notes in Physics 190, Springer-Verlag, Berlin-Heidelberg, 1983 IX+151 pp., 17 refs. , 1986 .

[33]  W. Ledermann INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .

[34]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[35]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.