A Generalization of Entanglement to Convex Operational Theories: Entanglement Relative to a Subspace of Observables
暂无分享,去创建一个
[1] R. Delbourgo,et al. Maximum weight vectors possess minimal uncertainty , 1977 .
[2] Physical Review , 1965, Nature.
[3] David Moore,et al. Current Research in Operational Quantum Logic , 2000 .
[4] Ordered Linear Spaces,et al. Foundations of quantum mechanics and ordered linear spaces : Advanced Study Institute, Marburg 1973 , 1974 .
[5] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[6] Alexander Wilce,et al. Tensor products in generalized measure theory , 1992 .
[7] R. Phelps,et al. Tensor products of compact convex sets. , 1969 .
[8] G. Illies,et al. Communications in Mathematical Physics , 2004 .
[9] M. Rosenlicht. Introduction to Analysis , 1970 .
[10] Lorenza Viola,et al. A subsystem-independent generalization of entanglement. , 2004, Physical review letters.
[11] Akademii︠a︡ medit︠s︡inskikh nauk Sssr. Journal of physics , 1939 .
[12] C D Batista,et al. Generalized Jordan-Wigner transformations. , 2001, Physical review letters.
[13] M. Zwaan. An introduction to hilbert space , 1990 .
[14] Peter D. Jarvis,et al. Reports on Mathematical Physics , 2006 .
[15] G. Vidal. On the characterization of entanglement , 1998 .
[16] P. Zanardi. Quantum entanglement in fermionic lattices , 2002 .
[17] E. Beltrametti,et al. Effect algebras and statistical physical theories , 1997 .
[18] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.
[19] E. Knill,et al. Generalizations of entanglement based on coherent states and convex sets , 2002, quant-ph/0207149.
[20] Bernard Kripke. Introduction to Analysis , 1968 .
[21] G. Ludwig. An axiomatic basis for quantum mechanics , 1985 .
[22] R. Gilmore,et al. Coherent states: Theory and some Applications , 1990 .
[23] J. Hilgert,et al. Lie groups, convex cones, and semigroups , 1989 .
[24] G. Ortiz,et al. Unveiling order behind complexity: Coexistence of ferromagnetism and Bose-Einstein condensation , 2002, cond-mat/0207073.
[25] L. Gurvits. Quantum Matching Theory (with new complexity theoretic, combinatorial and topological insights on the nature of the Quantum Entanglement) , 2002, quant-ph/0201022.
[26] October I. Physical Review Letters , 2022 .
[27] W Dür,et al. Optimal conversion of nonlocal unitary operations. , 2002, Physical review letters.
[28] A. Paul,et al. Pacific Journal of Mathematics , 1999 .
[29] M. Lewenstein,et al. Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.
[30] Charles H. Bennett,et al. Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.
[31] Charles H. Bennett,et al. Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[32] Wojciech Daniel. Book Review: States, effects and operations. Fundamental notions of quantum theory. Karl Kraus Lectures in Mathematical Physics at the University of Texas at Austin. Lecture Notes in Physics 190, Springer-Verlag, Berlin-Heidelberg, 1983 IX+151 pp., 17 refs. , 1986 .
[33] W. Ledermann. INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .
[34] A. Zeilinger,et al. Speakable and Unspeakable in Quantum Mechanics , 1989 .
[35] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.