Compression effects in helium-like atoms (Z=1,…,5) constrained by hard spherical walls

[1]  J. Garza,et al.  Confined helium atom low-lying S states analyzed through correlated Hylleraas wave functions and the Kohn-Sham model. , 2006, The Journal of chemical physics.

[2]  S. Patil,et al.  A simple description of the spectra of confined hydrogen, helium, and lithium , 2004 .

[3]  N. Aquino,et al.  The compressed helium atom variationally treated via a correlated Hylleraas wave function , 2003 .

[4]  J. Garza,et al.  Static dipole polarizability of shell-confined hydrogen atom , 2002 .

[5]  J. Vianna,et al.  A configuration interaction model to investigate many-electron systems in cavities , 2001 .

[6]  S. Manson,et al.  A unique situation for an endohedral metallofullerene , 1999 .

[7]  T. Guillot A COMPARISON OF THE INTERIORS OF JUPITER AND SATURN , 1999, astro-ph/9907402.

[8]  S. Manson,et al.  Electron structure of endohedrally confined atoms: atomic hydrogen in an attractive shell , 1999 .

[9]  J. Garza,et al.  Numerical self-consistent-field method to solve the Kohn-Sham equations in confined many-electron atoms , 1998 .

[10]  W. Jaskólski Confined many-electron systems , 1996 .

[11]  A. N. Aquino Accurate energy eigenvalues for enclosed hydrogen atom within spherical impenetrable boxes , 1995 .

[12]  Stephan W Koch,et al.  Semiconductor Quantum Dots , 1993 .

[13]  Flores-Riveros,et al.  Effects of intramolecular dynamics on nuclear fusion rates and sticking from resonant states of the molecular ion dt micro. , 1993, Physical review letters.

[14]  J. L. Marín,et al.  Use of the direct variational method for the study of one- and two-electron atomic systems confined by spherical penetrable boxes , 1992 .

[15]  Zikang Tang,et al.  Quantum Size Effect on the Excited State of HgI2,PbI2 and BiI3 Clusters and Molecules in Zeolite LTA , 1992 .

[16]  S. Goldman,et al.  Spectroscopic properties of an isotropically compressed hydrogen atom , 1992 .

[17]  S. Goldman,et al.  Quantum Monte Carlo studies of two-electron atoms constrained in spherical boxes , 1992 .

[18]  J. L. Marín,et al.  Enclosed quantum systems: use of the direct variational method , 1991 .

[19]  Eugene D. Fleischmann,et al.  Endohedral complexes: Atoms and ions inside the C60 cage , 1991 .

[20]  Eberhardt,et al.  Modification of the surface electronic structure of Cu(111) by monolayer Ni adsorption and the effects on H2 chemisorption. , 1989, Physical review. B, Condensed matter.

[21]  Monkhorst,et al.  Variational calculation of the energy levels for the td micro ion. , 1987, Physical review. A, General physics.

[22]  F. M. Fernández,et al.  Tratamiento hipervirial de sistemas mecano-cuanticos acotados , 1982 .

[23]  R. L. Mills,et al.  Equation of state and melting properties of 4 He from measurements to 20 kbar , 1980 .

[24]  E. V. Ludeña,et al.  Configuration interaction calculations for two‐electron atoms in a spherical box , 1979 .

[25]  E. Ley-Koo,et al.  The hydrogen atom within spherical boxes with penetrable walls , 1979 .

[26]  E. V. Ludeña SCF Hartree–Fock calculations of ground state wavefunctions of compressed atoms , 1978 .

[27]  B. M. Gimarc CORRELATION ENERGY OF THE TWO-ELECTRON ATOM IN A SPHERICAL POTENTIAL BOX. , 1967 .

[28]  R. Sack,et al.  Ground State of Systems of Three Particles with Coulomb Interaction , 1960 .

[29]  S. D. Groot,et al.  ON THE GROUND STATE OF A MODEL FOR COMPRESSED HELIUM , 1952 .

[30]  I. Kaplan,et al.  The Oscillator Concept in the Theory of Solids , 1947 .

[31]  A. Sommerfeld,et al.  Künstliche Grenzbedingungen beim Keplerproblem , 1938 .

[32]  J. D. Boer,et al.  Remarks concerning molecural interaction and their influence on the polarisability , 1937 .