The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population‐Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight

The Iberian Peninsula stands out as having variable levels of population admixture and isolation, making Spain an interesting setting for studying the genetic architecture of neurodegenerative diseases.

Sonja W. Scholz | D. Hernandez | M. Nalls | A. Singleton | J. Hoenicka | C. Blauwendraat | E. Tolosa | J. Kulisevsky | F. Valldeoriola | J. López-Sendón | V. Álvarez | J. Clarimón | P. Pástor | E. Muñoz | M. Marti | S. Scholz | J. Simón‐Sánchez | J. R. Gibbs | H. Morris | J. Brooks | C. Clarke | K. Morrison | J. Botía | J. Infante | C. Dalgard | A. López de Munain | J. Marín-Lahoz | B. Pascual-Sedano | J. Pagonabarraga | M. Aguilar | I. Álvarez | M. Diez-Fairen | Oriol Dols-Icardo | M. Menéndez-González | S. Bandres-Ciga | Sarah Ahmed | M. Sabir | A. Adarmes-Gómez | Inmaculada Bernal-Bernal | Marta Bonilla-Toribio | D. Buiza-Rueda | F. Carrillo | M. Carrión-Claro | P. Gómez-Garre | S. Jesús | M. Labrador-Espinosa | D. Macias | Carlota Méndez-del-Barrio | T. Periñán-Tocino | Cristina Tejera-Parrado | Laura Vargas-González | J. P. Tartari | M. Buongiorno | A. Gorostidi | J. Bergareche | E. Mondragón | A. Vinagre-Aragón | I. Croitoru | J. Ruiz‐Martinez | M. Ezquerra | A. Cámara | Y. Compta | Manel Fernández | R. Fernández-Santiago | I. González-Aramburu | A. Sánchez Rodríguez | M. Sierra | M. Blázquez | C. García | E. Suarez-San Martin | P. García-Ruiz | J. C. Martínez‐Castrillo | L. Vela-Desojo | C. Ruz | F. Barrero | F. Escamilla-Sevilla | A. Mínguez-Castellanos | D. Cerdán | C. Tabernero | M. J. Gomez Heredia | F. Pérez Errazquin | M. Romero-Acebal | C. Feliz | M. Mata | Irene Martínez Torres | Jonggeol J. Kim | S. Sáez-Atienzar | R. Jorda | L. Bonet-Ponce | M. Tan | Connor Edsall | A. Jiménez-Escrig | J. Duarte | F. Vives | R. Durán | P. Mir | M. Fernández | O. Dols-Icardo | P. Garcia-Ruiz | R. Duran | D. Buiza‐Rueda | Clara Ruz | J. Kim | I. Bernal-Bernal | C. Méndez-del-Barrio | C. Tejera-Parrado | L. Vargas-González | I. González‐Aramburu | J. Simón-Sánchez | J. Martínez‐Castrillo | I. Bernal‐Bernal | L. Vargas‐González | Luis Bonet-Ponce | Marta Bonilla‐Toribio | M. Tan

[1]  C. Paisán-Ruiz,et al.  Complete screening for glucocerebrosidase mutations in Parkinson disease patients from Greece , 2009, Neuroscience Letters.

[2]  E. Tolosa,et al.  Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study , 2008, The Lancet Neurology.

[3]  Nicholas J. Horton,et al.  Using R and RStudio for Data Management, Statistical Analysis, and Graphics , 2015 .

[4]  A. Singleton,et al.  alpha-Synuclein locus triplication causes Parkinson's disease. , 2003, Science.

[5]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[6]  M. Polymeropoulos,et al.  Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson’s disease , 1998, Human Genetics.

[7]  P. Stenson,et al.  Human Gene Mutation Database: towards a comprehensive central mutation database , 2007, Journal of Medical Genetics.

[8]  Sonja W. Scholz,et al.  Structural genomic variation in ischemic stroke , 2008, Neurogenetics.

[9]  I. Alonso,et al.  Genomic mechanisms underlying PARK2 large deletions identified in a cohort of patients with PD , 2016, Neurology: Genetics.

[10]  Sonja W. Scholz,et al.  NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases , 2017, Neurobiology of Aging.

[11]  Sonja W. Scholz,et al.  Parkinson disease age of onset GWAS: defining heritability, genetic loci and a-synuclein mechanisms , 2018, bioRxiv.

[12]  M. Nalls,et al.  A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci , 2017, Nature Genetics.

[13]  Tom R. Gaunt,et al.  LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis , 2016, bioRxiv.

[14]  Simon C. Potter,et al.  Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease , 2017, Brain : a journal of neurology.

[15]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[16]  S. Gabriel,et al.  The Structure of Haplotype Blocks in the Human Genome , 2002, Science.

[17]  Ulrike Grömping Using R and RStudio for Data Management, Statistical Analysis and Graphics (2nd Edition) , 2015 .

[18]  Ran Gilad-Bachrach,et al.  DART: Dropouts meet Multiple Additive Regression Trees , 2015, AISTATS.

[19]  A. Singleton,et al.  Complete screening for glucocerebrosidase mutations in Parkinson disease patients from Portugal , 2009, Neurobiology of Aging.

[20]  A. Singleton,et al.  Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. , 2009, Brain : a journal of neurology.

[21]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[22]  Sina A. Gharib,et al.  Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood , 2018, Nature Communications.

[23]  J. López-Barneo,et al.  Prevalence and clinical features of LRRK2 mutations in patients with Parkinson’s disease in southern Spain , 2009, European journal of neurology.

[24]  J. Obeso,et al.  Pooled-DNA target sequencing of Parkinson genes reveals novel phenotypic associations in Spanish population , 2018, Neurobiology of Aging.

[25]  Christopher R. Gignoux,et al.  Gene flow from North Africa contributes to differential human genetic diversity in southern Europe , 2013, Proceedings of the National Academy of Sciences.

[26]  Sonja W. Scholz,et al.  Parkinson’s disease genetics: identifying novel risk loci, providing causal insights and improving estimates of heritable risk , 2018, bioRxiv.

[27]  Janel O. Johnson,et al.  α-Synuclein Locus Triplication Causes Parkinson's Disease , 2003, Science.

[28]  E. Tolosa,et al.  Relative high frequency of the c.255delA parkin gene mutation in Spanish patients with autosomal recessive parkinsonism , 2002, Journal of neurology, neurosurgery, and psychiatry.

[29]  F. Morón,et al.  Genetic Structure of the Spanish Population , 2010, BMC Genomics.

[30]  E. Topol,et al.  The personal and clinical utility of polygenic risk scores , 2018, Nature Reviews Genetics.

[31]  Xiaowei Zhan,et al.  RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data , 2016, Bioinform..

[32]  Sonja W. Scholz,et al.  Expanding Parkinson’s disease genetics: novel risk loci, genomic context, causal insights and heritable risk , 2018 .

[33]  E. B. Wilson Probable Inference, the Law of Succession, and Statistical Inference , 1927 .

[34]  J. Kulisevsky,et al.  Dementia risk in Parkinson disease: disentangling the role of MAPT haplotypes. , 2011, Archives of neurology.

[35]  A. Gray,et al.  Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson's disease (PD MED): a large, open-label, pragmatic randomised trial. , 2014, Lancet.

[36]  Francisco Vives,et al.  Analysis of the genetic variability in Parkinson's disease from Southern Spain , 2016, Neurobiology of Aging.

[37]  P. Pollak,et al.  LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. , 2006, The New England journal of medicine.

[38]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[39]  Pablo Mir,et al.  Systematic mutational analysis of FBXO7 in a Parkinson's disease population from southern Spain , 2014, Neurobiology of Aging.

[40]  E. Tolosa,et al.  Familial atypical progressive supranuclear palsy associated with homozigosity for the delN296 mutation in the tau gene , 2001, Annals of neurology.

[41]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[42]  G. Abecasis,et al.  Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies , 2006, Nature Genetics.

[43]  S. Gilman,et al.  Diagnostic criteria for Parkinson disease. , 1999, Archives of neurology.

[44]  Yongtao Guan Detecting Structure of Haplotypes and Local Ancestry , 2014, Genetics.

[45]  Annie Niehaus,et al.  Using ClinVar as a Resource to Support Variant Interpretation , 2016, Current protocols in human genetics.

[46]  A. Singleton,et al.  Genetic risk factors in Parkinson’s disease , 2018, Cell and Tissue Research.

[47]  Jack Euesden,et al.  PRSice: Polygenic Risk Score software , 2014, Bioinform..