Numerical modelling and flow visualization of mixing of stratified layers and rollover in LNG

Abstract A numerical model has been developed to study the mixing of two initially stratified layers which are subjected to a uniform lateral heat flux. An important distinction is made between the free surface and the liquid/liquid interface with regard to the different flow characteristics of the two layers. In the upper layer where warm liquid is cooled at the evaporating surface, the convective circulation is featured by a strong downward core flow; in contrast, the fluid flow in the lower layer is mainly confined to the wall boundary and is much weaker. Flow visualization experiments show that mixing of two stratified layers generally involves two stages in sequence: migration of the interface and rapid mixing between the remaining liquids. The interface movement is due to entrainment mixing at the interface. When the two layers approach density equalization, the interface becomes increasingly unstable and the core flow in the upper layer is able to break into the lower layer. The base to side heat flux ratio appears to be a major factor in determining the mode and intensity of the subsequent mixing at a rollover incident.