Scalable Solar Thermoelectrics and Photovoltaics (SUNTRAP)

This paper presents the design, manufacture and electrical test of a novel integrated III:V low concentrator photovoltaic and thermoelectric device for enhanced solar energy harvesting efficiency. The PCB-based platform is a highly reliable means of controlling CPV cell operational temperature under a range of irradiance conditions. The design enables reproducible data acquisition from CPV solar cells whilst minimizing transient time for solid state cooling capability.

[1]  Tianjun Liao,et al.  Performance analysis and load matching of a photovoltaic–thermoelectric hybrid system , 2015 .

[2]  Bahgat Sammakia,et al.  Performance Analysis of a Combination System of Concentrating Photovoltaic/Thermal Collector and Thermoelectric Generators , 2014 .

[3]  Eduardo F. Fernández,et al.  Performance, limits and economic perspectives for passive cooling of High Concentrator Photovoltaics , 2016 .

[4]  Dario Narducci,et al.  Challenges and Perspectives in Tandem Thermoelectric–Photovoltaic Solar Energy Conversion , 2016, IEEE Transactions on Nanotechnology.

[5]  W.G.J.H.M. van Sark,et al.  Feasibility of photovoltaic – Thermoelectric hybrid modules , 2011 .

[6]  Gerald Siefer,et al.  Analysis of temperature coefficients for III–V multi‐junction concentrator cells , 2014 .

[7]  Gao Min,et al.  Design theory of thermoelectric modules for electrical power generation , 1996 .

[8]  Yimin Xuan,et al.  A novel choice for the photovoltaic–thermoelectric hybrid system: the perovskite solar cell , 2016 .

[9]  S. C. Kaushik,et al.  Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system , 2016 .

[10]  Filippo Attivissimo,et al.  Feasibility of a Photovoltaic–Thermoelectric Generator: Performance Analysis and Simulation Results , 2015, IEEE Transactions on Instrumentation and Measurement.

[11]  Bihong Lin,et al.  Performance characteristics of a low concentrated photovoltaic–thermoelectric hybrid power generation device , 2014 .

[12]  Gao Min,et al.  Low Frequency Impedance Spectroscopy Analysis of Thermoelectric Modules , 2014, Journal of Electronic Materials.

[13]  Andrea Alù,et al.  Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface , 2011 .

[14]  Eduardo F. Fernández,et al.  Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: A study and comparison of different methods , 2014 .

[15]  Evangelos Hristoforou,et al.  Experimental analysis and performance evaluation of a tandem photovoltaic–thermoelectric hybrid system , 2016 .

[16]  Eugene A. Katz,et al.  Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling , 2015 .

[17]  N. Nuraje,et al.  Perovskite Solar Cell , 2018 .

[18]  Jie Xiong,et al.  A Study and Comparison of Calculating Grüneisen Parameter Using Different Methods , 2010 .

[19]  Gao Min,et al.  Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system , 2016 .

[20]  Yao Wang,et al.  High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management , 2016 .