The centrosome and its duplication cycle.

The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.

[1]  T. Mayor,et al.  The Centrosomal Protein C-Nap1 Is Required for Cell Cycle–Regulated Centrosome Cohesion , 2000, The Journal of cell biology.

[2]  William C Earnshaw,et al.  Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling , 2008, Nature Genetics.

[3]  M. Pagano,et al.  USP33 regulates centrosome biogenesis via deubiquitination of the centriolar protein CP110 , 2013, Nature.

[4]  J. Kilmartin,et al.  Spindle pole body duplication: a model for centrosome duplication? , 2000, Trends in cell biology.

[5]  E. Schiebel,et al.  Plk1 Controls the Nek2A-PP1γ Antagonism in Centrosome Disjunction , 2011, Current Biology.

[6]  R. Baskin,et al.  A bipolar kinesin , 1996, Nature.

[7]  H. Saito,et al.  SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress , 2013, Nature Communications.

[8]  P. Wadsworth,et al.  Mitotic functions of kinesin-5. , 2010, Seminars in cell & developmental biology.

[9]  J. Raff,et al.  Centrioles Regulate Centrosome Size by Controlling the Rate of Cnn Incorporation into the PCM , 2010, Current Biology.

[10]  Funda Meric-Bernstam,et al.  BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. , 2006, Cancer cell.

[11]  Boyan Zhang,et al.  PCM1 recruits Plk1 to the pericentriolar matrix to promote primary cilia disassembly before mitotic entry , 2013, Journal of Cell Science.

[12]  R. Saunders,et al.  The Drosophila Gene abnormal spindle Encodes a Novel Microtubule-associated Protein That Associates with the Polar Regions of the Mitotic Spindle , 1997, The Journal of cell biology.

[13]  J. Petersen,et al.  Fission yeast Tor1 functions as part of TORC1 to control mitotic entry through the stress MAPK pathway following nutrient stress , 2009, Journal of Cell Science.

[14]  S. Jaspersen,et al.  Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p , 2002, The Journal of cell biology.

[15]  T. Tang,et al.  CPAP is a cell-cycle regulated protein that controls centriole length , 2009, Nature Cell Biology.

[16]  Zhao-Qi Wang,et al.  MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1–Cdc25 pathway , 2011, Nature Cell Biology.

[17]  J. Maller,et al.  Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. , 1993, Molecular biology of the cell.

[18]  M. Knop,et al.  Receptors determine the cellular localization of a γ‐tubulin complex and thereby the site of microtubule formation , 1998, The EMBO journal.

[19]  J. Liao,et al.  SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication. , 2014, Developmental cell.

[20]  Stephen S. Taylor,et al.  Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery , 2008, Nature.

[21]  P. Nurse Universal control mechanism regulating onset of M-phase , 1990, Nature.

[22]  J. García-Verdugo,et al.  Ofd1, a human disease gene, regulates the length and distal structure of centrioles. , 2010, Developmental cell.

[23]  D. Glover,et al.  The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. , 1995, Genes & development.

[24]  Sean J. Morrison,et al.  Asymmetric and symmetric stem-cell divisions in development and cancer , 2006, Nature.

[25]  K. Nasmyth,et al.  Cohesin cleavage is insufficient for centriole disengagement in Drosophila , 2013, Current Biology.

[26]  J. Maller,et al.  Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. , 1999, Science.

[27]  J. Reina,et al.  Drosophila neuroblasts retain the daughter centrosome , 2011, Nature communications.

[28]  I. Hagan,et al.  Removal of Centrosomal PP1 by NIMA Kinase Unlocks the MPF Feedback Loop to Promote Mitotic Commitment in S. pombe , 2013, Current Biology.

[29]  L. Schöckel,et al.  Cleavage of cohesin rings coordinates the separation of centrioles and chromatids , 2011, Nature Cell Biology.

[30]  S. Shi,et al.  Asymmetric centrosome inheritance maintains neural progenitors in neocortex , 2009, Nature.

[31]  P. Gönczy,et al.  The SCF–FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication , 2011, Nature Cell Biology.

[32]  James E. Ferrell,et al.  Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle , 2013, Nature.

[33]  D. Glover Polo kinase and progression through M phase in Drosophila: a perspective from the spindle poles , 2005, Oncogene.

[34]  M. Zhou,et al.  Identification of a novel Wnt5a–CK1ε–Dvl2–Plk1‐mediated primary cilia disassembly pathway , 2012, The EMBO journal.

[35]  Jill Falk,et al.  Lte1 promotes mitotic exit by controlling the localization of the spindle position checkpoint kinase Kin4 , 2011, Proceedings of the National Academy of Sciences.

[36]  J. Maller,et al.  Cyclin E-dependent localization of MCM5 regulates centrosome duplication , 2008, Journal of Cell Science.

[37]  Junjie Hou,et al.  Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to the centrosome , 2009, Journal of Cell Science.

[38]  K. O’Connell,et al.  The C. elegans F-box proteins LIN-23 and SEL-10 antagonize centrosome duplication by regulating ZYG-1 levels , 2012, Journal of Cell Science.

[39]  Vahan B. Indjeian,et al.  CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. , 2002, Developmental cell.

[40]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[41]  A. Fry,et al.  Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction , 2010, Nature Cell Biology.

[42]  P. Fantes Epistatic gene interactions in the control of division in fission yeast , 1979, Nature.

[43]  Junjie Chen,et al.  Microcephalin/MCPH1 Associates with the Condensin II Complex to Function in Homologous Recombination Repair* , 2008, Journal of Biological Chemistry.

[44]  G. Pereira,et al.  The 14-3-3 protein Bmh1 functions in the spindle position checkpoint by breaking Bfa1 asymmetry at yeast centrosomes , 2014, Molecular biology of the cell.

[45]  E. Salmon,et al.  Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. , 2000, Molecular biology of the cell.

[46]  J. Raff,et al.  Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation , 2012, Journal of Cell Science.

[47]  L. Lehmann,et al.  SAK/PLK4 Is Required for Centriole Duplication and Flagella Development , 2005, Current Biology.

[48]  Willis X. Li Cell Cycle Checkpoints , 2011, Methods in Molecular Biology.

[49]  Angelika Amon,et al.  Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. , 2004, Annual review of genetics.

[50]  J. Maller,et al.  Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity. , 1995, Molecular biology of the cell.

[51]  A. Fry,et al.  Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. , 2003, Molecular biology of the cell.

[52]  E. Nigg,et al.  STIL Microcephaly Mutations Interfere with APC/C-Mediated Degradation and Cause Centriole Amplification , 2014, Current Biology.

[53]  B. Byers,et al.  Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae , 1975, Journal of bacteriology.

[54]  G. C. Rogers,et al.  The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. , 2012, Structure.

[55]  Filipe Tavares-Cadete,et al.  Stepwise evolution of the centriole-assembly pathway , 2010, Journal of Cell Science.

[56]  N. Lamb,et al.  Distinct Pools of cdc25C Are Phosphorylated on Specific TP Sites and Differentially Localized in Human Mitotic Cells , 2010, PloS one.

[57]  H. Ropers,et al.  Establishment of a Mouse Model with Misregulated Chromosome Condensation due to Defective Mcph1 Function , 2010, PloS one.

[58]  T. Tang,et al.  Human microcephaly protein CEP135 binds to hSAS‐6 and CPAP, and is required for centriole assembly , 2013, The EMBO journal.

[59]  Shiaw-Yih Lin,et al.  Differential regulation of centrosome integrity by DNA damage response proteins , 2008, Cell cycle.

[60]  K. Tatchell,et al.  The JNM1 gene in the yeast Saccharomyces cerevisiae is required for nuclear migration and spindle orientation during the mitotic cell cycle , 1994, The Journal of cell biology.

[61]  Jiri Bartek,et al.  Centrosome duplication in mammalian somatic cells requires E2F and Cdk2–Cyclin A , 1999, Nature Cell Biology.

[62]  W. Lehmann,et al.  GCP6 is a substrate of Plk4 and required for centriole duplication , 2012, Journal of Cell Science.

[63]  K. Rhee,et al.  PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis , 2011, The Journal of cell biology.

[64]  Tiansen Li,et al.  Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. , 2005, Molecular biology of the cell.

[65]  S. Duensing,et al.  Daughter Centriole Elongation Is Controlled by Proteolysis , 2010, Molecular biology of the cell.

[66]  P. Meraldi,et al.  Mitotic spindle (DIS)orientation and DISease: Cause or consequence? , 2012, The Journal of cell biology.

[67]  E. Karsenti,et al.  Phosphorylation and activation of human cdc25‐C by cdc2‐‐cyclin B and its involvement in the self‐amplification of MPF at mitosis. , 1993, The EMBO journal.

[68]  J. Beisson,et al.  Basal body duplication in Paramecium: The key role of Bld10 in assembly and stability of the cartwheel , 2010, Cytoskeleton.

[69]  W E Moerner,et al.  STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. , 2012, Biophysical journal.

[70]  H. Schwarz,et al.  Asterless Is a Centriolar Protein Required for Centrosome Function and Embryo Development in Drosophila , 2007, Current Biology.

[71]  M. Knop,et al.  Spc98p and Spc97p of the yeast γ‐tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p , 1997, The EMBO journal.

[72]  Tim Stearns,et al.  Microtubules Orient the Mitotic Spindle in Yeast through Dynein-dependent Interactions with the Cell Cortex , 1997, The Journal of cell biology.

[73]  J. B. Rattner,et al.  CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. , 2008, Molecular biology of the cell.

[74]  J. Yates,et al.  Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication , 2014, Current Biology.

[75]  James E. Ferrell,et al.  Feedback regulation of opposing enzymes generates robust, all-or-none bistable responses , 2008, Current Biology.

[76]  Heinrich Leonhardt,et al.  3D-structured illumination microscopy provides novel insight into architecture of human centrosomes , 2012, Biology Open.

[77]  A. Amon,et al.  A Mechanism for Coupling Exit from Mitosis to Partitioning of the Nucleus , 2000, Cell.

[78]  N. Hayward,et al.  Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. , 1996, Journal of cell science.

[79]  Q. Jiang,et al.  Geminin is partially localized to the centrosome and plays a role in proper centrosome duplication , 2008, Biology of the cell.

[80]  Erica A. Golemis,et al.  The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome , 2005, Nature Cell Biology.

[81]  J. Raff,et al.  The Centrosome-Specific Phosphorylation of Cnn by Polo/Plk1 Drives Cnn Scaffold Assembly and Centrosome Maturation , 2014, Developmental cell.

[82]  D. A. Stirling,et al.  Interaction with calmodulin is required for the function of Spc110p, an essential component of the yeast spindle pole body. , 1994, The EMBO journal.

[83]  C. Woods,et al.  Primary microcephaly: do all roads lead to Rome? , 2009, Trends in genetics : TIG.

[84]  D. Pellman,et al.  Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. , 2000, Science.

[85]  G. Fink,et al.  KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast , 1987, Cell.

[86]  A. Jeyasekharan,et al.  Continuous polo-like kinase 1 activity regulates diffusion to maintain centrosome self-organization during mitosis , 2011, Proceedings of the National Academy of Sciences.

[87]  S. Bagley,et al.  Recruitment of NIMA kinase shows that maturation of the S. pombe spindle-pole body occurs over consecutive cell cycles and reveals a role for NIMA in modulating SIN activity. , 2004, Genes & development.

[88]  L. Pelletier,et al.  CEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation , 2013, Current Biology.

[89]  J. Kilmartin,et al.  The spindle pole body component Spc98p interacts with the gamma‐tubulin‐like Tub4p of Saccharomyces cerevisiae at the sites of microtubule attachment. , 1996, The EMBO journal.

[90]  J. Labbé,et al.  The Polo-like kinase Plx1 is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. , 1998, Journal of cell science.

[91]  T. Davis,et al.  Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe. , 2002, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[92]  Esther Bullitt,et al.  The Yeast Spindle Pole Body Is Assembled around a Central Crystal of Spc42p , 1997, Cell.

[93]  B. Coull,et al.  Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization , 2008, Oncogene.

[94]  A. Hyman,et al.  Aurora A activates D-TACC–Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules , 2005, The Journal of cell biology.

[95]  E. Schiebel,et al.  The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body , 1995, The Journal of cell biology.

[96]  T. Stearns,et al.  Cep152 interacts with Plk4 and is required for centriole duplication , 2010, The Journal of cell biology.

[97]  E. Myers,et al.  Limiting Amounts of Centrosome Material Set Centrosome Size in C. elegans Embryos , 2011, Current Biology.

[98]  E. Nigg,et al.  Cell-cycle-regulated expression of STIL controls centriole number in human cells , 2012, Journal of Cell Science.

[99]  H. Feilotter,et al.  stf1: non-wee mutations epistatic to cdc25 in the fission yeast Schizosaccharomyces pombe. , 1990, Genetics.

[100]  Violaine Mottier-Pavie,et al.  Drosophila bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly. , 2009, Molecular biology of the cell.

[101]  Erich A. Nigg,et al.  Cep164, a novel centriole appendage protein required for primary cilium formation , 2007, The Journal of cell biology.

[102]  S. Elledge,et al.  BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[103]  C. Jessus,et al.  Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. , 1999, Journal of cell science.

[104]  B. Dynlacht,et al.  Centriolar Kinesin Kif24 Interacts with CP110 to Remodel Microtubules and Regulate Ciliogenesis , 2011, Cell.

[105]  J. Reina,et al.  Centrobin controls mother–daughter centriole asymmetry in Drosophila neuroblasts , 2013, Nature Cell Biology.

[106]  J. Kilmartin Lessons from yeast: the spindle pole body and the centrosome , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[107]  I. Verma,et al.  The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. , 2012, Genes & development.

[108]  H. Zentgraf,et al.  Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1 , 2009, The Journal of cell biology.

[109]  Wei Zheng,et al.  Conserved Motif of CDK5RAP2 Mediates Its Localization to Centrosomes and the Golgi Complex* , 2010, The Journal of Biological Chemistry.

[110]  N. Katsanis,et al.  Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry , 2011, Nature Cell Biology.

[111]  Sebastian A. Leidel,et al.  SAS-4 is essential for centrosome duplication in C elegans and is recruited to daughter centrioles once per cell cycle. , 2003, Developmental cell.

[112]  E. Schiebel,et al.  The spacer protein Spc110p targets calmodulin to the central plaque of the yeast spindle pole body. , 1996, Journal of cell science.

[113]  M. Pagano,et al.  SCFCyclin F controls centrosome homeostasis and mitotic fidelity via CP110 degradation , 2010, Nature.

[114]  E. Nigg,et al.  Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication , 2013, Journal of Cell Science.

[115]  T. Stearns,et al.  Mechanism limiting centrosome duplication to once per cell cycle , 2006, Nature.

[116]  P. Gönczy,et al.  Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry , 2013, Proceedings of the National Academy of Sciences.

[117]  T. Stearns,et al.  Cep120 is asymmetrically localized to the daughter centriole and is essential for centriole assembly , 2010, The Journal of cell biology.

[118]  J. Grindlay,et al.  Nud1p links astral microtubule organization and the control of exit from mitosis , 2000, The EMBO journal.

[119]  E. Nigg,et al.  Plk4 trans-autophosphorylation regulates centriole number by controlling βTrCP-mediated degradation , 2010, Journal of Cell Science.

[120]  J. Raff,et al.  Drosophila Spd-2 Recruits PCM to the Sperm Centriole, but Is Dispensable for Centriole Duplication , 2007, Current Biology.

[121]  H. Maekawa,et al.  The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal , 2007, The Journal of cell biology.

[122]  B. Alberts,et al.  Microtubule nucleation by γ-tubulin-containing rings in the centrosome , 1995, Nature.

[123]  Lisa Weber,et al.  Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation , 2014, eLife.

[124]  S. Pääbo,et al.  Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline , 2010, Proceedings of the National Academy of Sciences.

[125]  P. Gönczy,et al.  Structural Basis of the 9-Fold Symmetry of Centrioles , 2011, Cell.

[126]  W. Snell,et al.  An aurora kinase is essential for flagellar disassembly in Chlamydomonas. , 2004, Developmental cell.

[127]  P. Gönczy,et al.  PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos. , 2011, Developmental cell.

[128]  K. Anderson,et al.  The Spinocerebellar Ataxia-Associated Gene Tau Tubulin Kinase 2 Controls the Initiation of Ciliogenesis , 2012, Cell.

[129]  A. Kiger,et al.  Stem Cell Self-Renewal Specified by JAK-STAT Activation in Response to a Support Cell Cue , 2001, Science.

[130]  E. Griffis,et al.  Fa1p is a 171 kDa protein essential for axonemal microtubule severing in Chlamydomonas. , 2000, Journal of cell science.

[131]  M. Rose,et al.  Kar9p Is a Novel Cortical Protein Required for Cytoplasmic Microtubule Orientation in Yeast , 1998, The Journal of cell biology.

[132]  B. Hemmings,et al.  NDR kinases regulate essential cell processes from yeast to humans , 2006, Nature Reviews Molecular Cell Biology.

[133]  Y. Terada,et al.  Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells , 2003, The Journal of cell biology.

[134]  Cheol‐Hee Kim,et al.  CCDC41 is required for ciliary vesicle docking to the mother centriole , 2013, Proceedings of the National Academy of Sciences.

[135]  T. Tang,et al.  Functional characterization of the microtubule-binding and -destabilizing domains of CPAP and d-SAS-4. , 2008, Experimental cell research.

[136]  M. Riparbelli,et al.  Assembly and persistence of primary cilia in dividing Drosophila spermatocytes. , 2012, Developmental cell.

[137]  V. A. Tallada,et al.  Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast , 2012, Nature Cell Biology.

[138]  G. C. Rogers,et al.  Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization , 2012, Nature Cell Biology.

[139]  C. Anderson,et al.  Centriole Age Underlies Asynchronous Primary Cilium Growth in Mammalian Cells , 2009, Current Biology.

[140]  S. Shaw,et al.  Astral Microtubule Dynamics in Yeast: A Microtubule-based Searching Mechanism for Spindle Orientation and Nuclear Migration into the Bud , 1997, The Journal of cell biology.

[141]  G. C. Rogers,et al.  The SCFSlimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication , 2009, The Journal of cell biology.

[142]  Roger L. Williams,et al.  Structural role of Sfi1p–centrin filaments in budding yeast spindle pole body duplication , 2006, The Journal of cell biology.

[143]  T. Stearns,et al.  Plk1-Dependent Recruitment of γ-Tubulin Complexes to Mitotic Centrosomes Involves Multiple PCM Components , 2009, PloS one.

[144]  T. Tang,et al.  The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation , 2011, The EMBO journal.

[145]  A. Fry,et al.  Oscillation of APC/C activity during cell cycle arrest promotes centrosome amplification , 2012, Journal of Cell Science.

[146]  K. Oegema,et al.  Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. , 2013, Developmental cell.

[147]  Z. Darżynkiewicz,et al.  sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1. , 2008, Developmental cell.

[148]  G. Pereira,et al.  SPOC alert--when chromosomes get the wrong direction. , 2012, Experimental cell research.

[149]  T. Davis,et al.  The essential mitotic target of calmodulin is the 110-kilodalton component of the spindle pole body in Saccharomyces cerevisiae , 1993, Molecular and cellular biology.

[150]  D. Glover,et al.  Polar expeditions — provisioning the centrosome for mitosis , 2003, Nature Cell Biology.

[151]  J. Raff,et al.  Cnn Dynamics Drive Centrosome Size Asymmetry to Ensure Daughter Centriole Retention in Drosophila Neuroblasts , 2010, Current Biology.

[152]  I. Hagan,et al.  Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast , 2005, Nature.

[153]  E. Schiebel,et al.  The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body , 1993, The Journal of cell biology.

[154]  J. Asara,et al.  Centriole distal appendages promote membrane docking, leading to cilia initiation. , 2013, Genes & development.

[155]  Y. Ono,et al.  Kendrin Is a Novel Substrate for Separase Involved in the Licensing of Centriole Duplication , 2012, Current Biology.

[156]  B. Gabrielli,et al.  Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events. , 2000, Experimental cell research.

[157]  N. Rusan,et al.  PLP inhibits the activity of interphase centrosomes to ensure their proper segregation in stem cells , 2013, The Journal of cell biology.

[158]  Anthony Bretscher,et al.  Myosin V orientates the mitotic spindle in yeast , 2000, Nature.

[159]  M. Tyers,et al.  The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. , 1998, Molecular cell.

[160]  Ignacio Izeddin,et al.  Assessing the localization of centrosomal proteins by PALM/STORM nanoscopy , 2011, Cytoskeleton.

[161]  F. Gergely,et al.  Abnormal centrosomal structure and duplication in Cep135-deficient vertebrate cells , 2013, Molecular biology of the cell.

[162]  K. Kemphues,et al.  The C. elegans zyg-1 Gene Encodes a Regulator of Centrosome Duplication with Distinct Maternal and Paternal Roles in the Embryo , 2001, Cell.

[163]  E. Schiebel,et al.  Kin4 kinase delays mitotic exit in response to spindle alignment defects. , 2005, Molecular cell.

[164]  M. Hirono,et al.  SAS-6 is a Cartwheel Protein that Establishes the 9-Fold Symmetry of the Centriole , 2007, Current Biology.

[165]  D. Beach,et al.  Distinct nuclear and spindle pole body populations of cyclin–cdc2 in fission yeast , 1990, Nature.

[166]  P. Gönczy,et al.  Centrosomes promote timely mitotic entry in C. elegans embryos. , 2007, Developmental cell.

[167]  G. Pereira,et al.  The power of MEN in cytokinesis , 2012, Cell cycle.

[168]  F. MacIver,et al.  Physical and functional interactions between polo kinase and the spindle pole component Cut12 regulate mitotic commitment in S. pombe. , 2003, Genes & development.

[169]  Christopher J. Wilkinson,et al.  Rootletin forms centriole-associated filaments and functions in centrosome cohesion , 2005, The Journal of cell biology.

[170]  R. T. Hoopen,et al.  Spindle Pole Body History Intrinsically Links Pole Identity with Asymmetric Fate in Budding Yeast , 2013, Current Biology.

[171]  Sebastian A. Leidel,et al.  Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. , 2007, Developmental cell.

[172]  B. Byers,et al.  Duplication of spindle plaques and integration of the yeast cell cycle. , 1974, Cold Spring Harbor symposia on quantitative biology.

[173]  C. Sung,et al.  Ciliary transition zone activation of phospho-Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors , 2011, Nature Cell Biology.

[174]  D. Agard,et al.  The structure of the gamma-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. , 2008, Molecular biology of the cell.

[175]  M. Morphew,et al.  The fission yeast SPB component Cut12 links bipolar spindle formation to mitotic control. , 1998, Genes & development.

[176]  Alexander Dammermann,et al.  Multiple Mechanisms Contribute to Centriole Separation in C. elegans , 2013, Current Biology.

[177]  G. Brooks,et al.  Regulation of cell cycle and stress responses to hydrostatic pressure in fission yeast. , 2007, Molecular biology of the cell.

[178]  E. Schiebel,et al.  The role of the yeast spindle pole body and the mammalian centrosome in regulating late mitotic events. , 2001, Current opinion in cell biology.

[179]  P. Jallepalli,et al.  Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. , 2009, Developmental cell.

[180]  K. Bloom,et al.  The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast , 2000, Current Biology.

[181]  P. Curmi,et al.  The PN2-3 Domain of Centrosomal P4.1-associated Protein Implements a Novel Mechanism for Tubulin Sequestration* , 2009, Journal of Biological Chemistry.

[182]  Michael A. Gonzalez,et al.  Depletion of licensing inhibitor geminin causes centrosome overduplication and mitotic defects , 2005, EMBO reports.

[183]  D. Glover,et al.  DSAS-6 Organizes a Tube-like Centriole Precursor, and Its Absence Suggests Modularity in Centriole Assembly , 2007, Current Biology.

[184]  Pierre Gönczy,et al.  Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos. , 2009, Developmental cell.

[185]  J. Raff,et al.  Asterless Licenses Daughter Centrioles to Duplicate for the First Time in Drosophila Embryos , 2014, Current Biology.

[186]  J. Ahringer,et al.  Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. , 2004, Developmental cell.

[187]  M. Bornens,et al.  Autophosphorylation of Polo-like Kinase 4 and Its Role in Centriole Duplication , 2010, Molecular biology of the cell.

[188]  Erica A. Golemis,et al.  HEF1-Dependent Aurora A Activation Induces Disassembly of the Primary Cilium , 2007, Cell.

[189]  H. Saya,et al.  NDEL1 Phosphorylation by Aurora-A Kinase Is Essential for Centrosomal Maturation, Separation, and TACC3 Recruitment , 2006, Molecular and Cellular Biology.

[190]  J. Raff,et al.  SAS-6 oligomerization: the key to the centriole? , 2011, Nature chemical biology.

[191]  U. Strausfeld,et al.  Activation of p34cdc2 protein kinase by microinjection of human cdc25C into mammalian cells. Requirement for prior phosphorylation of cdc25C by p34cdc2 on sites phosphorylated at mitosis. , 1994, The Journal of biological chemistry.

[192]  K. Oegema,et al.  Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly , 2013, eLife.

[193]  J. Raff,et al.  A molecular mechanism of mitotic centrosome assembly in Drosophila , 2014, eLife.

[194]  J. Roig,et al.  The where, when and how of microtubule nucleation – one ring to rule them all , 2012, Journal of Cell Science.

[195]  P. Nurse,et al.  TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases , 2007, Nature Cell Biology.

[196]  J. Dennis,et al.  The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization , 2002, Nature Structural Biology.

[197]  Spindle Pole Body , 2002 .

[198]  B. Byers,et al.  Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[199]  E. Salmon,et al.  Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae , 1995, The Journal of cell biology.

[200]  V. Malhotra,et al.  CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. , 2008, Developmental cell.

[201]  E. Nigg,et al.  Plk4-induced centriole biogenesis in human cells. , 2007, Developmental cell.

[202]  C. Jessus,et al.  Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes , 2004, Development.

[203]  F. Gergely,et al.  CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response , 2010, The Journal of cell biology.

[204]  S. Elledge,et al.  Regulation of the Bub2/Bfa1 GAP Complex by Cdc5 and Cell Cycle Checkpoints , 2001, Cell.

[205]  C. Gonzalez,et al.  Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. , 2007, Developmental cell.

[206]  R. Medema,et al.  The decision to enter mitosis: feedback and redundancy in the mitotic entry network , 2009, The Journal of cell biology.

[207]  B. Stillman,et al.  Orc1 Controls Centriole and Centrosome Copy Number in Human Cells , 2009, Science.

[208]  Laurence Pelletier,et al.  Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material , 2012, Nature Cell Biology.

[209]  Sebastian A. Leidel,et al.  Centriolar SAS-5 is required for centrosome duplication in C. elegans , 2004, Nature Cell Biology.

[210]  G. Pereira,et al.  The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4 , 2011, The Journal of cell biology.

[211]  W. Marshall,et al.  Stages of ciliogenesis and regulation of ciliary length. , 2012, Differentiation; research in biological diversity.

[212]  G. Sluder,et al.  The interrelationship between APC/C and Plk1 activities in centriole disengagement , 2012, Biology Open.

[213]  H. F. Horn,et al.  Nucleophosmin/B23 Is a Target of CDK2/Cyclin E in Centrosome Duplication , 2000, Cell.

[214]  Michael J. Lee,et al.  Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules , 2002, The Journal of cell biology.

[215]  A. Spektor,et al.  Cep97 and CP110 Suppress a Cilia Assembly Program , 2007, Cell.

[216]  J. Kilmartin Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication , 2003, The Journal of cell biology.

[217]  Christopher J. Wilkinson,et al.  The Polo kinase Plk4 functions in centriole duplication , 2005, Nature Cell Biology.

[218]  J. Finch,et al.  A spacer protein in the Saccharomyces cerevisiae spindle poly body whose transcript is cell cycle-regulated , 1993, The Journal of cell biology.

[219]  A. Mahowald,et al.  Asymmetric Inheritance of Mother Versus Daughter Centrosome in Stem Cell Division , 2007, Science.

[220]  T. Stearns,et al.  Cyclin-dependent kinase control of centrosome duplication. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[221]  G. C. Rogers,et al.  The Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification , 2011, The Journal of cell biology.

[222]  J. Salisbury A mechanistic view on the evolutionary origin for centrin‐based control of centriole duplication , 2007, Journal of cellular physiology.

[223]  Bianca Habermann,et al.  Centriole assembly requires both centriolar and pericentriolar material proteins. , 2004, Developmental cell.

[224]  Y. Ono,et al.  Involvement of a centrosomal protein kendrin in the maintenance of centrosome cohesion by modulating Nek2A kinase activity. , 2010, Biochemical and biophysical research communications.

[225]  M. Winey,et al.  Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[226]  P. Philippsen,et al.  Cnm67p is a spacer protein of the Saccharomyces cerevisiae spindle pole body outer plaque. , 2001, Molecular biology of the cell.

[227]  M. Mahjoub,et al.  Centrioles are freed from cilia by severing prior to mitosis , 2010, Cytoskeleton.

[228]  S. Bonaccorsi,et al.  Drosophila SPD-2 Is an Essential Centriole Component Required for PCM Recruitment and Astral-Microtubule Nucleation , 2008, Current Biology.

[229]  J. Cooper,et al.  The Cortical Protein Num1p Is Essential for Dynein-Dependent Interactions of Microtubules with the Cortex , 2000, The Journal of cell biology.

[230]  V. Simanis Events at the end of mitosis in the budding and fission yeasts , 2003, Journal of Cell Science.

[231]  G. Peng,et al.  BRIT1/MCPH1 Is Essential for Mitotic and Meiotic Recombination DNA Repair and Maintaining Genomic Stability in Mice , 2010, PLoS genetics.

[232]  Vladimir Larionov,et al.  The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein. , 2005, Human molecular genetics.

[233]  I. Heath Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis. , 1980, International review of cytology.

[234]  K. Oegema,et al.  SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the γ-tubulin–mediated addition of centriolar microtubules , 2008, The Journal of cell biology.

[235]  J. Pines,et al.  Active cyclin B1–Cdk1 first appears on centrosomes in prophase , 2003, Nature Cell Biology.

[236]  M Bettencourt-Dias,et al.  Revisiting the Role of the Mother Centriole in Centriole Biogenesis , 2007, Science.

[237]  G. Pereira,et al.  Spindle alignment regulates the dynamic association of checkpoint proteins with yeast spindle pole bodies. , 2009, Developmental cell.

[238]  S. Biggins,et al.  Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body , 1994, The Journal of cell biology.

[239]  T. Tang,et al.  CEP120 interacts with CPAP and positively regulates centriole elongation , 2013, The Journal of cell biology.

[240]  M. Knop,et al.  Spc29p is a component of the Spc110p subcomplex and is essential for spindle pole body duplication. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[241]  J. Yates,et al.  Bora and the Kinase Aurora A Cooperatively Activate the Kinase Plk1 and Control Mitotic Entry , 2008, Science.

[242]  P. Gönczy,et al.  Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL , 2011, Journal of Cell Science.

[243]  Daniel P. Mulvihill,et al.  Plo1 kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe. , 1999, Molecular biology of the cell.

[244]  J. Kilmartin,et al.  Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. , 1996, The EMBO journal.

[245]  Benjamin Goh,et al.  The FA2 gene of Chlamydomonas encodes a NIMA family kinase with roles in cell cycle progression and microtubule severing during deflagellation. , 2002, Journal of cell science.

[246]  T. Davis,et al.  A mutational analysis identifies three functional regions of the spindle pole component Spc110p in Saccharomyces cerevisiae. , 1997, Molecular biology of the cell.

[247]  E. Nigg,et al.  Control of Centriole Length by CPAP and CP110 , 2009, Current Biology.

[248]  E. Nishida,et al.  Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells , 1999, Current Biology.

[249]  B. Monsarrat,et al.  Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2–M transition , 2004, Journal of Cell Science.

[250]  H. F. Horn,et al.  Specific Phosphorylation of Nucleophosmin on Thr199 by Cyclin- dependent Kinase 2-Cyclin E and Its Role in Centrosome Duplication* , 2001, The Journal of Biological Chemistry.

[251]  A. Kumagai,et al.  Purification and Molecular Cloning of Plx1, a Cdc25-Regulatory Kinase from Xenopus Egg Extracts , 1996, Science.

[252]  V. A. Tallada,et al.  Suppression of the Schizosaccharomyces pombe cut12.1 Cell-Cycle Defect by Mutations in cdc25 and Genes Involved in Transcriptional and Translational Control , 2007, Genetics.

[253]  J. Raff,et al.  DSas-6 and Ana2 Coassemble into Tubules to Promote Centriole Duplication and Engagement , 2010, Developmental cell.

[254]  J. Petersen,et al.  Aurora promotes cell division during recovery from TOR-mediated cell cycle arrest by driving spindle pole body recruitment of Polo , 2011, Journal of Cell Science.

[255]  N. Rusan,et al.  Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment , 2012, Nature Cell Biology.

[256]  P. Gönczy,et al.  NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Gα , 2009, Nature Cell Biology.

[257]  Wieland B Huttner,et al.  Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells , 2006, Proceedings of the National Academy of Sciences.

[258]  A. Lindqvist,et al.  Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1–Cdk1 at the centrosome , 2005, The Journal of cell biology.

[259]  E. Formstecher,et al.  hPOC5 is a centrin-binding protein required for assembly of full-length centrioles , 2009, The Journal of cell biology.

[260]  J. Grindlay,et al.  The Bub2p spindle checkpoint links nuclear migration with mitotic exit. , 2000, Molecular cell.

[261]  P. Gönczy,et al.  Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. , 2013, Developmental cell.

[262]  L. Johnston,et al.  In Vitro Regulation of Budding Yeast Bfa1/Bub2 GAP Activity by Cdc5* , 2003, The Journal of Biological Chemistry.

[263]  M. Bettencourt-Dias,et al.  Deconstructing the centriole: structure and number control. , 2012, Current opinion in cell biology.

[264]  A. Tassin,et al.  Procentriole assembly revealed by cryo‐electron tomography , 2010, The EMBO journal.

[265]  G. Dong,et al.  SAS‐6 coiled‐coil structure and interaction with SAS‐5 suggest a regulatory mechanism in C. elegans centriole assembly , 2012, The EMBO journal.

[266]  Q. Jiang,et al.  Clathrin recruits phosphorylated TACC3 to spindle poles for bipolar spindle assembly and chromosome alignment , 2010, Journal of Cell Science.

[267]  K. Furge,et al.  Byr4 and Cdc16 form a two-component GTPase-activating protein for the Spg1 GTPase that controls septation in fission yeast , 1998, Current Biology.

[268]  Claude Antony,et al.  An extended γ-tubulin ring functions as a stable platform in microtubule nucleation , 2012, The Journal of cell biology.

[269]  Masamitsu Sato,et al.  Fission yeast Pcp1 links polo kinase-mediated mitotic entry to γ-tubulin-dependent spindle formation , 2009, The EMBO journal.

[270]  P. Cohen,et al.  NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. , 2000, The Biochemical journal.

[271]  S. Gygi,et al.  Author Correction: Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome , 2011, Nature Communications.

[272]  E. Matunis,et al.  Control of Stem Cell Self-Renewal in Drosophila Spermatogenesis by JAK-STAT Signaling , 2001, Science.

[273]  V. A. Tallada,et al.  The S. pombe mitotic regulator Cut12 promotes spindle pole body activation and integration into the nuclear envelope , 2009, The Journal of cell biology.

[274]  J. Kilmartin,et al.  Localization of Core Spindle Pole Body (SPB) Components during SPB Duplication in Saccharomyces cerevisiae , 1999, The Journal of cell biology.

[275]  L. Frisén,et al.  The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. , 1998, Molecular biology of the cell.

[276]  K. Fukasawa P53, cyclin-dependent kinase and abnormal amplification of centrosomes. , 2008, Biochimica et biophysica acta.

[277]  D. Glover,et al.  Asterless is a scaffold for the onset of centriole assembly , 2010, Nature.

[278]  O. Gavet,et al.  Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. , 2010, Developmental cell.

[279]  Anthony A. Hyman,et al.  SAS-4 Is a C. elegans Centriolar Protein that Controls Centrosome Size , 2003, Cell.

[280]  P. Gönczy,et al.  Cartwheel Architecture of Trichonympha Basal Body , 2012, Science.

[281]  Wallace F. Marshall,et al.  Centrosome Loss in the Evolution of Planarians , 2012, Science.

[282]  Timothy J. Mitchison,et al.  Probing Spindle Assembly Mechanisms with Monastrol, a Small Molecule Inhibitor of the Mitotic Kinesin, Eg5 , 2000, The Journal of cell biology.

[283]  T. Kaufman,et al.  The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. , 1999, Development.

[284]  Clemens Cabernard,et al.  The Centriolar Protein Bld10/Cep135 Is Required to Establish Centrosome Asymmetry in Drosophila Neuroblasts , 2014, Current Biology.

[285]  A. Hyman,et al.  Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis , 2005, The Journal of cell biology.

[286]  L. Quarmby,et al.  Cellular Samurai: katanin and the severing of microtubules. , 2000, Journal of cell science.

[287]  Mi Hye Song,et al.  Protein Phosphatase 2a-sur-6/b55 Regulates Centriole Duplication in C. Elegans by Controlling the Levels of Centriole Assembly Factors , 2022 .

[288]  M. Erat,et al.  Structural Analysis of the G-Box Domain of the Microcephaly Protein CPAP Suggests a Role in Centriole Architecture , 2013, Structure.

[289]  The Caenorhabditis elegans Centrosomal Protein SPD-2 Is Required for both Pericentriolar Material Recruitment and Centriole Duplication , 2004 .

[290]  D. Glover,et al.  Structured illumination of the interface between centriole and peri-centriolar material , 2012, Open Biology.

[291]  W. Marshall,et al.  Ciliogenesis: building the cell's antenna , 2011, Nature Reviews Molecular Cell Biology.

[292]  Angelika Amon,et al.  The protein kinase Kin4 inhibits exit from mitosis in response to spindle position defects. , 2005, Molecular cell.

[293]  Jessica K. Polka,et al.  Microtubule nucleating γTuSC assembles structures with 13-fold microtubule-like symmetry , 2010, Nature.

[294]  C. Dai,et al.  Department of Biochemistry , 2011 .

[295]  D. Glover,et al.  Klp10A, a Microtubule-Depolymerizing Kinesin-13, Cooperates with CP110 to Control Drosophila Centriole Length , 2012, Current Biology.

[296]  A. Hyman,et al.  Centriole assembly in Caenorhabditis elegans , 2006, Nature.

[297]  P. Gönczy,et al.  Overly Long Centrioles and Defective Cell Division upon Excess of the SAS-4-Related Protein CPAP , 2009, Current Biology.

[298]  Xingzhi Xu,et al.  Microcephalin Is a DNA Damage Response Protein Involved in Regulation of CHK1 and BRCA1*♦ , 2004, Journal of Biological Chemistry.

[299]  E. Laue,et al.  The SCF/Slimb Ubiquitin Ligase Limits Centrosome Amplification through Degradation of SAK/PLK4 , 2009, Current Biology.

[300]  K. Nasmyth,et al.  Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex , 2001, The EMBO journal.

[301]  K. Sawin,et al.  Two distinct regions of Mto1 are required for normal microtubule nucleation and efficient association with the γ-tubulin complex in vivo , 2008, Journal of Cell Science.

[302]  J. Cooper,et al.  Microtubule Interactions with the Cell Cortex Causing Nuclear Movements in Saccharomyces cerevisiae , 2000, The Journal of cell biology.

[303]  R. J. Finst,et al.  Genetics of the deflagellation pathway in Chlamydomonas. , 1998, Genetics.

[304]  P. Meraldi,et al.  C-Nap1, a Novel Centrosomal Coiled-Coil Protein and Candidate Substrate of the Cell Cycle–regulated Protein Kinase Nek2 , 1998, The Journal of cell biology.

[305]  H. Zentgraf,et al.  STIL is required for centriole duplication in human cells , 2012, Journal of Cell Science.

[306]  R. Wollman,et al.  Genes Required for Mitotic Spindle Assembly in Drosophila S2 Cells , 2007, Science.

[307]  J. Loncarek,et al.  Centriole Reduplication during Prolonged Interphase Requires Procentriole Maturation Governed by Plk1 , 2010, Current Biology.

[308]  P. Gönczy,et al.  Sequential Protein Recruitment in C. elegans Centriole Formation , 2006, Current Biology.

[309]  G. Peng,et al.  BRIT1/MCPH1 Links Chromatin Remodeling to DNA Damage Response , 2009, Nature Cell Biology.

[310]  Marco Archinti,et al.  SPICE – a previously uncharacterized protein required for centriole duplication and mitotic chromosome congression , 2010, Journal of Cell Science.

[311]  K. Rhee,et al.  Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis , 2012, Cell cycle.

[312]  M. Winey,et al.  The Mouse Mps1p-like Kinase Regulates Centrosome Duplication , 2001, Cell.

[313]  Daniel P. Mulvihill,et al.  The role of Plo1 kinase in mitotic commitment and septation in Schizosaccharomyces pombe , 2001, The EMBO journal.

[314]  I. Hoffmann,et al.  Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome , 2010, The Journal of cell biology.

[315]  E. Houliston,et al.  Nuclei and Microtubule Asters Stimulate Maturation/M Phase Promoting Factor (Mpf) Activation in Xenopus Eggs and Egg Cytoplasmic Extracts , 2000, The Journal of cell biology.

[316]  M. Nakanishi,et al.  Nuclear Chk1 prevents premature mitotic entry , 2011, Journal of Cell Science.

[317]  J. Rosenbaum,et al.  Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. , 2008, Current topics in developmental biology.

[318]  C. Woods,et al.  A Primary Microcephaly Protein Complex forms a ring around parental centrioles , 2011, Nature Genetics.

[319]  P. Russell,et al.  Stockpiling of Cdc25 during a DNA replication checkpoint arrest in Schizosaccharomyces pombe , 1996, Molecular and cellular biology.

[320]  Buzz Baum,et al.  A Genome-Wide RNAi Screen to Dissect Centriole Duplication and Centrosome Maturation in Drosophila , 2008, PLoS biology.

[321]  J. Kilmartin,et al.  Spc42p: a phosphorylated component of the S. cerevisiae spindle pole body (SPD) with an essential function during SPB duplication , 1996, The Journal of cell biology.

[322]  Sherry L. Niessen,et al.  Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability , 2010, The Journal of cell biology.

[323]  M. Knop,et al.  The spindle pole body component Spc97p interacts with the γ‐tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication , 1997, The EMBO journal.

[324]  C. Walsh,et al.  Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors , 2010, Development.

[325]  M. Hirono,et al.  Bld10p Constitutes the Cartwheel-Spoke Tip and Stabilizes the 9-Fold Symmetry of the Centriole , 2007, Current Biology.

[326]  T. Megraw,et al.  Proper recruitment of gamma-tubulin and D-TACC/Msps to embryonic Drosophila centrosomes requires Centrosomin Motif 1. , 2007, Molecular biology of the cell.

[327]  J. Maller,et al.  The cyclin A centrosomal localization sequence recruits MCM5 and Orc1 to regulate centrosome reduplication , 2010, Journal of Cell Science.

[328]  D. Glover,et al.  Plk4 Phosphorylates Ana2 to Trigger Sas6 Recruitment and Procentriole Formation , 2014, Current Biology.

[329]  M. Dorée,et al.  p34cdc2 is located in both nucleus and cytoplasm; part is centrosomally associated at G2/M and enters vesicles at anaphase. , 1989, The EMBO journal.