Genetic Programming: On the Programming of Computers by Means of Natural Selection

Background on genetic algorithms, LISP, and genetic programming hierarchical problem-solving introduction to automatically-defined functions - the two-boxes problem problems that straddle the breakeven point for computational effort Boolean parity functions determining the architecture of the program the lawnmower problem the bumblebee problem the increasing benefits of ADFs as problems are scaled up finding an impulse response function artificial ant on the San Mateo trail obstacle-avoiding robot the minesweeper problem automatic discovery of detectors for letter recognition flushes and four-of-a-kinds in a pinochle deck introduction to biochemistry and molecular biology prediction of transmembrane domains in proteins prediction of omega loops in proteins lookahead version of the transmembrane problem evolutionary selection of the architecture of the program evolution of primitives and sufficiency evolutionary selection of terminals evolution of closure simultaneous evolution of architecture, primitive functions, terminals, sufficiency, and closure the role of representation and the lens effect. Appendices: list of special symbols list of special functions list of type fonts default parameters computer implementation annotated bibliography of genetic programming electronic mailing list and public repository.