Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method
暂无分享,去创建一个
[1] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[2] E. Blum,et al. The Mathematical Theory of Optimal Processes. , 1963 .
[3] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[4] Donald E. Kirk,et al. Optimal control theory : an introduction , 1970 .
[5] W. Hager. Rates of Convergence for Discrete Approximations to Unconstrained Control Problems , 1976 .
[6] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[7] G. Reddien. Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .
[8] Dieter Kraft,et al. On Converting Optimal Control Problems into Nonlinear Programming Problems , 1985 .
[9] Anil V. Rao,et al. Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .
[10] C. Hargraves,et al. DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .
[11] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[12] Jacques Vlassenbroeck,et al. A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..
[13] R. V. Dooren,et al. A Chebyshev technique for solving nonlinear optimal control problems , 1988 .
[14] J. E. Cuthrell,et al. Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .
[15] Bruce A. Conway,et al. Discrete approximations to optimal trajectories using direct transcription and nonlinear programming , 1992 .
[16] O. V. Stryk,et al. Numerical Solution of Optimal Control Problems by Direct Collocation , 1993 .
[17] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[18] Gamal N. Elnagar,et al. The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..
[19] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[20] A. L. Herman,et al. Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules , 1996 .
[21] Hans Seywald,et al. Method for automatic costate calculation , 1996 .
[22] Gamal N. Elnagar,et al. Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..
[23] I. Michael Ross,et al. Costate Estimation by a Legendre Pseudospectral Method , 1998 .
[24] J. Betts. Survey of Numerical Methods for Trajectory Optimization , 1998 .
[25] Michael A. Saunders,et al. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..
[26] I. Michael Ross,et al. Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .
[27] Francesca Rossi,et al. Principles and Practice of Constraint Programming – CP 2003 , 2003, Lecture Notes in Computer Science.
[28] I. Michael Ross,et al. Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .
[29] A. Rao,et al. AAS 05-103 OPTIMAL CONFIGURATION OF SPACECRAFT FORMATIONS VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .
[30] Kenneth Holmström,et al. Mixed-Integer expensive constrained global optimization with TOMLAB , 2005 .
[31] A. Rao,et al. POST-OPTIMALITY EVALUATION AND ANALYSIS OF A FORMATION FLYING PROBLEM VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .
[32] Geoffrey T. Huntington,et al. OPTIMAL RECONFIGURATION OF A TETRAHEDRAL FORMATION VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .
[33] David Benson,et al. A Gauss pseudospectral transcription for optimal control , 2005 .