Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method

A pseudospectral method, called the Gauss pseudospectral method, for solving nonlinear optimal control problems is presented. In the method presented here, orthogonal collocation of the dynamics is performed at the Legendre-Gauss points. This form of orthogonal collocation leads a nonlinear programming problem (NLP) whose Karush-Kuhn-Tucker (KKT) multipliers can be mapped to the costates of the continuous-time optimal control problem. In particular the Legendre-Gauss collocation leads to a costate mapping at the boundary points. The method is demonstrated on an example problem where it is shown that highly accurate costates are obtained. The results presented in this paper show that the Gauss pseudospectral method is a viable apprach for direct trajectory optimization and costate estimation.

[1]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[2]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[3]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[4]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[5]  W. Hager Rates of Convergence for Discrete Approximations to Unconstrained Control Problems , 1976 .

[6]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[7]  G. Reddien Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .

[8]  Dieter Kraft,et al.  On Converting Optimal Control Problems into Nonlinear Programming Problems , 1985 .

[9]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[10]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[11]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[12]  Jacques Vlassenbroeck,et al.  A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..

[13]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[14]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[15]  Bruce A. Conway,et al.  Discrete approximations to optimal trajectories using direct transcription and nonlinear programming , 1992 .

[16]  O. V. Stryk,et al.  Numerical Solution of Optimal Control Problems by Direct Collocation , 1993 .

[17]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[18]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[19]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[20]  A. L. Herman,et al.  Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules , 1996 .

[21]  Hans Seywald,et al.  Method for automatic costate calculation , 1996 .

[22]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[23]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[24]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[25]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[26]  I. Michael Ross,et al.  Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .

[27]  Francesca Rossi,et al.  Principles and Practice of Constraint Programming – CP 2003 , 2003, Lecture Notes in Computer Science.

[28]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[29]  A. Rao,et al.  AAS 05-103 OPTIMAL CONFIGURATION OF SPACECRAFT FORMATIONS VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .

[30]  Kenneth Holmström,et al.  Mixed-Integer expensive constrained global optimization with TOMLAB , 2005 .

[31]  A. Rao,et al.  POST-OPTIMALITY EVALUATION AND ANALYSIS OF A FORMATION FLYING PROBLEM VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .

[32]  Geoffrey T. Huntington,et al.  OPTIMAL RECONFIGURATION OF A TETRAHEDRAL FORMATION VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .

[33]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .