Branching Brownian motion with spatially homogeneous and point-catalytic branching

We consider a model of Branching Brownian Motion in which the usual spatially-homogeneous and catalytic branching at a single point are simultaneously present. We establish the almost sure growth rates of population in certain time-dependent regions and as a consequence the first-order asymptotic behaviour of the rightmost particle.

[1]  Maury Bramson,et al.  Maximal displacement of branching brownian motion , 1978 .

[2]  S. Harris,et al.  Branching Brownian Motion with Catalytic Branching at the Origin , 2013, 1302.4087.

[3]  Matthew I. Roberts,et al.  The many-to-few lemma and multiple spines , 2011, 1106.4761.

[4]  A. Klenke A Review on Spatial Catalytic Branching , 2009 .

[5]  Matthew I. Roberts A simple path to asymptotics for the frontier of a branching Brownian motion , 2011, 1106.4771.

[6]  R. Durrett Probability: Theory and Examples , 1993 .

[7]  Dmitry Turaev,et al.  A SCALING LIMIT THEOREM FOR A CLASS OF SUPERDIFFUSIONS , 2002 .

[8]  P. Carmona,et al.  The Spread of a Catalytic Branching Random Walk , 2012, 1202.0637.

[9]  S. Shreve,et al.  Trivariate Density of Brownian Motion, Its Local and Occupation Times, with Application to Stochastic Control , 1984 .

[10]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[11]  R. Hardy,et al.  A Spine Approach to Branching Diffusions with Applications to L p -Convergence of Martingales , 2009 .

[12]  Russell Lyons,et al.  A Simple Path to Biggins’ Martingale Convergence for Branching Random Walk , 1998, math/9803100.

[13]  A. Kyprianou Travelling wave solutions to the K-P-P equation: alternatives to Simon Harris' probabilistic analysis , 2004 .

[14]  R. Song,et al.  Llog L Condition for Supercritical Branching Hunt Processes , 2010, 1009.4481.

[15]  D. Dawson,et al.  A super-Brownian motion with a single point catalyst , 1994 .

[16]  H. McKean Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov , 1975 .

[17]  T. Sellke,et al.  A Conditional Limit Theorem for the Frontier of a Branching Brownian Motion , 1987 .

[18]  Branching Brownian motion with an inhomogeneous breeding potential , 2009 .

[19]  E. Bulinskaya Spread of a catalytic branching random walk on a multidimensional lattice , 2016, Stochastic Processes and their Applications.