Numerical solutions to singular ϕ-Laplacianwith Dirichlet boundary conditions

AbstractIn this note we are concerned with numerical solutions to Dirichlet problem [ϕ(u′)]′=f(x)in[α,β];u(α)=A,u(β)=B,$$[\phi(u')]' =f(x) \quad \mbox{in} [\alpha, \beta]; \quad u(\alpha)=A, \; u(\beta)=B, $$ where ϕ:(−η,η)→ℝ$\phi :(-\eta , \eta ) \to \mathbb {R}$(η<+∞)$(\eta <+ \infty )$ is an increasing diffeomorphism with ϕ′(y)≥d>0$\phi '(y)\geq d >0$ for all y∈(−η,η)$y\in (-\eta , \eta )$. The obtained algorithm combines the shooting method with Euler’s method and it is convergent whenever the problem is solvable. We provide numerical experiments confirming the theoretical aspects.

[1]  R. Manásevich,et al.  On a result of Brezis and Mawhin , 2012 .

[2]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[3]  J. Mawhin,et al.  Multiple solutions for Neumann and periodic problems with singular ϕ-Laplacian , 2011 .

[4]  J. Mawhin Resonance Problems for Some Non-autonomous Ordinary Differential Equations , 2013 .

[5]  P. Torres Periodic oscillations of the relativistic pendulum with friction , 2008 .

[6]  W. Mccrea,et al.  Introduction to the Theory of Relativity , 1942, Nature.

[7]  J. Mawhin,et al.  Periodic solutions of the forced relativistic pendulum , 2010, Differential and Integral Equations.

[8]  J. Miller Numerical Analysis , 1966, Nature.

[9]  J. Mawhin,et al.  Nonhomogeneous boundary value problems for some nonlinear equations with singular phi-Laplacian , 2009 .

[10]  J. Mawhin Radial Solutions of Neumann Problem for Periodic Perturbations of the Mean Extrinsic Curvature Operator , 2011 .

[11]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[12]  Elena-Iulia Stoica,et al.  FACULTY OF MATHEMATICS AND INFORMATICS , 2010 .

[13]  Eugene Isaacson,et al.  Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell) , 1989, SIAM Rev..

[14]  J. Mawhin,et al.  Variational methods for nonlinear perturbations of singular φ-Laplacians , 2011 .