Fabrication of GaOx based crossbar array memristive devices and their resistive switching properties

[1]  Yidong Xia,et al.  Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films , 2010 .

[2]  Wei D. Lu,et al.  Experimental Demonstration of Feature Extraction and Dimensionality Reduction Using Memristor Networks. , 2017, Nano letters.

[3]  Bin Gao,et al.  Fully hardware-implemented memristor convolutional neural network , 2020, Nature.

[4]  S. Takeuchi,et al.  Demonstrative operation of four-terminal memristive devices fabricated on reduced TiO2 single crystals , 2019, Scientific Reports.

[5]  Lih-Juann Chen,et al.  Dynamic evolution of conducting nanofilament in resistive switching memories. , 2013, Nano letters.

[6]  Farnood Merrikh-Bayat,et al.  3-D Memristor Crossbars for Analog and Neuromorphic Computing Applications , 2017, IEEE Transactions on Electron Devices.

[7]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[8]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[9]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[10]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[11]  T. Tohei,et al.  Gate Tuning of Synaptic Functions Based on Oxygen Vacancy Distribution Control in Four-Terminal TiO2−x Memristive Devices , 2019, Scientific Reports.

[12]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[13]  T. Serrano-Gotarredona,et al.  STDP and STDP variations with memristors for spiking neuromorphic learning systems , 2013, Front. Neurosci..

[14]  Fabien Alibart,et al.  Pattern classification by memristive crossbar circuits using ex situ and in situ training , 2013, Nature Communications.

[15]  Alessandro Calderoni,et al.  Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses , 2018, Science Advances.

[16]  S. Takeuchi,et al.  Analysis of Ti valence states in resistive switching regions of a rutile TiO2−x four-terminal memristive device , 2018 .

[17]  J. Yang,et al.  Memristive crossbar arrays for brain-inspired computing , 2019, Nature Materials.

[18]  Catherine E. Graves,et al.  Memristor‐Based Analog Computation and Neural Network Classification with a Dot Product Engine , 2018, Advanced materials.

[19]  D. Cha,et al.  Effects of electrode material and configuration on the characteristics of planar resistive switching devices , 2013 .

[20]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[21]  H.-S. Philip Wong,et al.  Face classification using electronic synapses , 2017, Nature Communications.

[22]  Myoung-Jae Lee,et al.  Modeling for bipolar resistive memory switching in transition-metal oxides , 2010 .

[23]  Dmitri B. Strukov,et al.  Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits , 2017, Nature Communications.

[24]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[25]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[26]  J. Janek,et al.  A chemically driven insulator-metal transition in non-stoichiometric and amorphous gallium oxide. , 2008, Nature materials.

[27]  Z. Mi,et al.  Highly stable resistive switching on monocrystalline ZnO , 2010, Nanotechnology.

[28]  Pritish Narayanan,et al.  Neuromorphic computing using non-volatile memory , 2017 .

[29]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[30]  Manfred Martin,et al.  Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour , 2014, Nature Communications.

[31]  B. Hsieh,et al.  Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy , 1996 .

[32]  Timothée Masquelier,et al.  Deep Learning in Spiking Neural Networks , 2018, Neural Networks.

[33]  E. Dickey,et al.  Electric-field-induced point defect redistribution in single-crystal TiO2–x and effects on electrical transport , 2015 .