A conservative discontinuous Galerkin method for the Degasperis-Procesi equation

To Stanley Osher on his 70th birthday with friendship and appreciation Abstract. In this work, we design, analyze and test a conservative discontinuous Galerkin method for solving the Degasperis-Procesi equation. This model is integrable and admits possibly discontinuous solutions, and therefore suitable for modeling both short wave breaking and long wave propagation phenomena. The proposed numerical method is high order accurate, and preserves two invariants, mass and energy, of this nonlinear equation, hence producing wave solutions with satisfying long time behavior. The L 2 -stability of the scheme for general solutions is a consequence of the energy preserving property. The numerical simulation results for different types of solutions of the nonlinear Degasperis-Procesi equation are provided to illustrate the accuracy and capability of the method.

[1]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[2]  Hailiang Liu,et al.  A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: Energy conservation and boundary effect , 2013, J. Comput. Phys..

[3]  Darryl D. Holm,et al.  Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..

[4]  Yan Xu,et al.  A Local Discontinuous Galerkin Method for the Camassa-Holm Equation , 2008, SIAM J. Numer. Anal..

[5]  Yoshimasa Matsuno,et al.  Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit , 2005 .

[6]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[7]  Hailiang Liu,et al.  A local discontinuous Galerkin method for the Korteweg-de Vries equation with boundary effect , 2006, J. Comput. Phys..

[8]  Giuseppe Maria Coclite,et al.  Numerical schemes for computing discontinuous solutions of the Degasperis–Procesi equation , 2007 .

[9]  Hailiang Liu,et al.  The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems , 2008, SIAM J. Numer. Anal..

[10]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[11]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for High-Order Time-Dependent Partial Differential Equations , 2009 .

[12]  Zhaoyang Yin,et al.  Global regularity, and wave breaking phenomena in a class of nonlocal dispersive equations , 2009, 0911.3404.

[13]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[14]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for the Degasperis-Procesi Equation , 2011 .

[15]  Hans Lundmark,et al.  Multi-peakon solutions of the Degasperis–Procesi equation , 2003, nlin/0503033.

[16]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[17]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[18]  Takayasu Matsuo Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations , 2008 .

[19]  Zhaoyang Yin,et al.  Global Existence and Blow-Up Phenomena for the Degasperis-Procesi Equation , 2006 .

[20]  Hans Lundmark,et al.  Degasperis-Procesi peakons and the discrete cubic string , 2005, nlin/0503036.

[21]  J. Escher,et al.  Global existence and blow-up for a shallow water equation , 1998 .

[22]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[23]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[24]  A. Awane,et al.  k‐symplectic structures , 1992 .

[25]  Chi-Wang Shu,et al.  A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives , 2007, Math. Comput..

[26]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[27]  Yan Xu,et al.  Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations , 2005 .

[28]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[29]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[30]  Tae Gab Ha,et al.  On traveling wave solutions of the θ-equation of dispersive type , 2015 .

[31]  Joachim Escher,et al.  Global weak solutions and blow-up structure for the Degasperis–Procesi equation , 2006 .

[32]  Joachim Escher,et al.  Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation , 2007 .

[33]  Darryl D. Holm,et al.  Wave Structures and Nonlinear Balances in a Family of 1 + 1 Evolutionary PDEs , 2008 .

[34]  Antonio Degasperis,et al.  A test in Asymptotic Integrability of 1 + 1 wave equations , 1998 .

[35]  Zhaoyang Yin,et al.  Global existence for a new periodic integrable equation , 2003 .

[36]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  Elena Celledoni,et al.  Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..

[38]  Yoshimasa Matsuno,et al.  The N-soliton solution of the Degasperis–Procesi equation , 2005, nlin/0511029.

[39]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[40]  Y. Liu,et al.  An operator splitting method for the Degasperis-Procesi equation , 2009, J. Comput. Phys..

[41]  Yulong Xing,et al.  Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation , 2013, Math. Comput..

[42]  Zhaoyang Yin,et al.  On the Cauchy problem for an integrable equation with peakon solutions , 2003 .

[43]  Giuseppe Maria Coclite,et al.  On the well-posedness of the Degasperis-Procesi equation , 2006 .

[44]  Claus-Dieter Munz,et al.  A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes , 2007, J. Comput. Phys..

[45]  Hailiang Liu,et al.  Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations , 2015, Math. Comput..

[46]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[47]  Jue Yan,et al.  THE DIRECT DISCONTINUOUS GALERKIN (DDG) METHOD FOR DIFFUSION WITH INTERFACE CORRECTIONS , 2010 .

[48]  Zhaoyang Yin,et al.  Global weak solutions for a new periodic integrable equation with peakon solutions , 2004 .

[49]  Bram Van Leer,et al.  Discontinuous Galerkin for Diffusion , 2005 .

[50]  Yuto Miyatake,et al.  Conservative finite difference schemes for the Degasperis-Procesi equation , 2012, J. Comput. Appl. Math..

[51]  Giuseppe Maria Coclite,et al.  ON THE UNIQUENESS OF DISCONTINUOUS SOLUTIONS TO THE DEGASPERIS–PROCESI EQUATION , 2007 .

[52]  Chi-Wang Shu,et al.  Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations , 2007 .

[53]  Hans Lundmark,et al.  Formation and Dynamics of Shock Waves in the Degasperis-Procesi Equation , 2007, J. Nonlinear Sci..

[54]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[55]  Jonatan Lenells,et al.  Traveling wave solutions of the Degasperis-Procesi equation , 2005 .

[56]  G. Coclite,et al.  Analytic Solutions and Singularity Formation for the Peakon b-Family Equations , 2012, 1202.4983.

[57]  Håkon Hoel ftp ejde.math.txstate.edu (login: ftp) A NUMERICAL SCHEME USING MULTI-SHOCKPEAKONS TO COMPUTE SOLUTIONS OF THE DEGASPERIS-PROCESI EQUATION , 2022 .