Performance of Pt/Cr2O3, Pt/ZrO2, and, Pt/γ-Al2O3 Catalysts in Total Oxidation of Methane: Effect of Metal–Support Interaction

[1]  A. Jensen,et al.  A Rhodium-Based Methane Oxidation Catalyst with High Tolerance to H2O and SO2 , 2020 .

[2]  Q. Jiang,et al.  Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction , 2019, Applied Catalysis B: Environmental.

[3]  N. Russo,et al.  Synthesis and characterization of Ce and Er doped ZrO2 nanoparticles as solar light driven photocatalysts , 2019, Journal of Alloys and Compounds.

[4]  Yanbing Guo,et al.  Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane , 2017 .

[5]  B. Cuenya,et al.  Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions. , 2016, The journal of physical chemistry letters.

[6]  Elena O. Filatova,et al.  Interpretation of the Changing the Band Gap of Al2O3 Depending on Its Crystalline Form: Connection with Different Local Symmetries , 2015 .

[7]  F. Tao,et al.  Understanding complete oxidation of methane on spinel oxides at a molecular level , 2015, Nature Communications.

[8]  Yue Ma,et al.  High-resolution XPS and DFT investigations into Al-modified Phillips CrOx/SiO2 catalysts , 2015 .

[9]  F. Rajab,et al.  Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties , 2014 .

[10]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[11]  Shenghu Zhou,et al.  Enhanced Catalytic Hydrogenation Activity and Selectivity of Pt-MxOy/Al2O3 (M = Ni, Fe, Co) Heteroaggregate Catalysts by in Situ Transformation of PtM Alloy Nanoparticles , 2013 .

[12]  R. Farrauto Low-Temperature Oxidation of Methane , 2012, Science.

[13]  M. Skoglundh,et al.  Sulfur promoted low-temperature oxidation of methane over ceria supported platinum catalysts , 2011 .

[14]  Matthew Neurock,et al.  Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. , 2011, Journal of the American Chemical Society.

[15]  M. Abrashev,et al.  Electrochromic and optical study of atmospheric pressure chemical vapour deposition MoO3-Cr2O3 films. , 2011, Journal of nanoscience and nanotechnology.

[16]  Steve Mohr,et al.  Long term forecasting of natural gas production , 2011 .

[17]  A. Baranov,et al.  Micro‐Raman characterization of laser‐induced local thermo‐oxidation of thin chromium films , 2011 .

[18]  R. Frost,et al.  Transition of chromium oxyhydroxide nanomaterials to chromium oxide: a hot‐stage Raman spectroscopic study , 2011 .

[19]  M. Skoglundh,et al.  In Situ Spectroscopic Investigation of Low-Temperature Oxidation of Methane over Alumina-Supported Platinum during Periodic Operation† , 2011 .

[20]  Olivier Boucher,et al.  New Directions: Atmospheric methane removal as a way to mitigate climate change? , 2010 .

[21]  A. Gewirth,et al.  Potential Dependent Chromate Adsorption on Gold , 2009 .

[22]  M. Skoglundh,et al.  Virtual Control for High Conversion of Methane Over Supported Pt , 2009 .

[23]  M. Skoglundh,et al.  Methane oxidation over alumina supported platinum investigated by time-resolved in situ XANES spectroscopy , 2007 .

[24]  V. Zhdanov,et al.  Simulation of methane oxidation on Pt. , 2007, The Journal of chemical physics.

[25]  E. Fridell,et al.  Methane oxidation over Pt/Al2O3 and Pd/Al2O3 catalysts under transient conditions , 2007 .

[26]  H. Yoshida,et al.  Support effect on methane combustion over palladium catalysts , 2007 .

[27]  G. A. Farias,et al.  Structural, electronic, and optical properties of ZrO2 from ab initio calculations , 2006, 1204.2886.

[28]  Boping Liu,et al.  Photo-stability of surface chromate species on Phillips CrOx/SiO2 catalysts isothermally calcined at various temperatures, probed by high resolution X-ray photoelectron spectroscopy , 2005 .

[29]  R. Burch,et al.  Some aspects of hydrocarbon activation on platinum group metal combustion catalysts , 1996 .

[30]  Fabio H. Ribeiro,et al.  Kinetics of the Complete Oxidation of Methane over Supported Palladium Catalysts , 1994 .

[31]  S. Katz,et al.  The toxicology of chromium with respect to its chemical speciation: A review , 1993, Journal of applied toxicology : JAT.

[32]  L. Guczi,et al.  Structure and catalytic activity of alumina supported platinum-cobalt bimetallic catalysts. 3. Effect of treatment on the interface layer , 1992 .

[33]  S. Gardner,et al.  Effect of pretreatment on a platinized tin oxide catalyst used for low‐temperature Co oxidation , 1990 .

[34]  T. Barr,et al.  Studies of Pt Metal Catalysis by High-Resolution Electron Spectroscopy for Chemical Analysis , 1989 .

[35]  Nicholas Winograd,et al.  Electron spectroscopy of platinum-oxygen surfaces and application to electrochemical studies , 1971 .

[36]  R. Schlögl,et al.  Methane Activation by Heterogeneous Catalysis , 2014, Catalysis Letters.

[37]  Zheng-Hong Lu,et al.  Universal energy-level alignment of molecules on metal oxides. , 2011, Nature materials.

[38]  Geoffrey I. Webb,et al.  Supported Metal Catalysts: Preparation, Characterization, and Function: I. Preparation and Physical Characterization of Platinum Catalysts , 1993 .

[39]  I. R. Beattie,et al.  The single-crystal Raman spectra of nearly opaque materials. Iron(III) oxide and chromium(III) oxide , 1970 .

[40]  M. Mosesman Stability of Chromium Oxides , 1954 .