Pattern classification using grey tolerance rough sets

Purpose – The purpose of this paper is to propose that the grey tolerance rough set (GTRS) and construct the GTRS-based classifiers. Design/methodology/approach – The authors use grey relational analysis to implement a relationship-based similarity measure for tolerance rough sets. Findings – The proposed classification method has been tested on several real-world data sets. Its classification performance is comparable to that of other rough-set-based methods. Originality/value – The authors design a variant of a similarity measure which can be used to estimate the relationship between any two patterns, such that the closer the relationship, the greater the similarity will be.

[1]  Ludmila I. Kuncheva,et al.  Fuzzy Classifier Design , 2000, Studies in Fuzziness and Soft Computing.

[2]  George J. Klir,et al.  Genetic algorithms for determining fuzzy measures from data , 1998, J. Intell. Fuzzy Syst..

[3]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[4]  Jianwen Ma,et al.  Remote sensing data classification using tolerant rough set and neural networks , 2005 .

[5]  Hong Shen,et al.  Incremental feature selection based on rough set in dynamic incomplete data , 2014, Pattern Recognit..

[6]  Andrzej Skowron,et al.  Rough Sets , 1995, Lecture Notes in Computer Science.

[7]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[8]  Jan G. Bazan,et al.  Rough set algorithms in classification problem , 2000 .

[9]  Marcin S. Szczuka,et al.  RSES and RSESlib - A Collection of Tools for Rough Set Computations , 2000, Rough Sets and Current Trends in Computing.

[10]  Yi-Chung Hu,et al.  Nonadditive grey single-layer perceptron with Choquet integral for pattern classification problems using genetic algorithms , 2008, Neurocomputing.

[11]  Jianwen Ma,et al.  Land cover classification based on tolerant rough set , 2006 .

[12]  Daijin Kim,et al.  Data classification based on tolerant rough set , 2001, Pattern Recognit..

[13]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[14]  Jerzy W. Grzymala-Busse,et al.  Global discretization of continuous attributes as preprocessing for machine learning , 1996, Int. J. Approx. Reason..

[15]  Lakhmi C. Jain,et al.  Neural Network Training Using Genetic Algorithms , 1996 .

[16]  Qiang Shen,et al.  Exploring the boundary region of tolerance rough sets for feature selection , 2009, Pattern Recognit..

[17]  Andrzej Osyczka,et al.  Evolutionary Algorithms for Single and Multicriteria Design Optimization , 2001 .

[18]  R. Iman,et al.  Approximations of the critical region of the fbietkan statistic , 1980 .

[19]  Yi-Chung Hu,et al.  Rough sets for pattern classification using pairwise-comparison-based tables , 2013 .

[20]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[21]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[22]  Deng Ju-Long,et al.  Control problems of grey systems , 1982 .

[23]  Andrzej Skowron,et al.  Multimodal Classification: Case Studies , 2006, Trans. Rough Sets.

[24]  Yi-Chung Hu,et al.  Grey self-organizing feature maps , 2002, Neurocomputing.

[25]  Qiang Shen,et al.  Tolerance-based and Fuzzy-Rough Feature Selection , 2007, 2007 IEEE International Fuzzy Systems Conference.

[26]  J. Stepaniuk Rough – Granular Computing in Knowledge Discovery and Data Mining , 2008 .

[27]  Salvatore Greco,et al.  Rough Sets. Mathematical foundations, Lech Polkowski. Physica-Verlag, Heidelberg (2002), ISBN: 3-7908-1510-1 , 2006, Eur. J. Oper. Res..

[28]  Yi-Chung Hu,et al.  Flow-based grey single-layer perceptron with fuzzy integral , 2012, Neurocomputing.

[29]  Hisao Ishibuchi,et al.  Classification and modeling with linguistic information granules - advanced approaches to linguistic data mining , 2004, Advanced information processing.

[30]  Daijin Kim,et al.  A Handwritten Numeral Character Classification Using Tolerant Rough Set , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Zdzislaw Pawlak,et al.  Rough Set Theory , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[32]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[33]  Andrzej Skowron,et al.  Hyperrelations in version space , 2002, SAC '02.

[34]  Andreas Holzman Grey Information Theory And Practical Applications , 2016 .

[35]  Yi-Chung Hu,et al.  Flow-based tolerance rough sets for pattern classification , 2015, Appl. Soft Comput..

[36]  Jianhua Dai,et al.  On the union and intersection operations of rough sets based on various approximation spaces , 2015, Inf. Sci..

[37]  J. Grzymala-Busse,et al.  Three discretization methods for rule induction , 2001 .

[38]  Andrzej Skowron,et al.  A Hierarchical Approach to Multimodal Classification , 2005, RSFDGrC.

[39]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[40]  R. E. Lee,et al.  Distribution-free multiple comparisons between successive treatments , 1995 .

[41]  Marcin S. Szczuka,et al.  The Rough Set Exploration System , 2005, Trans. Rough Sets.

[42]  J. Grzymala-Busse,et al.  Rough Set Approaches to Rule Induction from Incomplete Data , 2004 .

[43]  Arkadiusz Wojna,et al.  On the Evolution of Rough Set Exploration System , 2004, Rough Sets and Current Trends in Computing.

[44]  Feng Jiang,et al.  A novel approach for discretization of continuous attributes in rough set theory , 2015, Knowl. Based Syst..

[45]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[46]  Andrzej Skowron,et al.  Searching for Relational Patterns in Data , 1997, PKDD.

[47]  Desire L. Massart,et al.  Rough sets theory , 1999 .

[48]  Tony R. Martinez,et al.  Distribution-balanced stratified cross-validation for accuracy estimation , 2000, J. Exp. Theor. Artif. Intell..

[49]  Marcin S. Szczuka,et al.  A New Version of Rough Set Exploration System , 2002, Rough Sets and Current Trends in Computing.