The Hierarchy of Equivalence Relations on the Natural Numbers Under Computable Reducibility
暂无分享,去创建一个
[1] W. Calvert,et al. Comparing Classes of Finite Structures , 2004, 0803.3291.
[2] Sy-David Friedman,et al. Equivalence Relations on Classes of Computable Structures , 2009, CiE.
[3] Andrea Sorbi,et al. Universal computably Enumerable Equivalence Relations , 2014, J. Symb. Log..
[4] Julia F. Knight,et al. Turing computable embeddings , 2007, J. Symb. Log..
[5] Alan H. Mekler. Stability of Nilpotent Groups of Class 2 and Prime Exponent , 1981, J. Symb. Log..
[6] R. Soare. Recursively enumerable sets and degrees , 1987 .
[7] Andrea Sorbi,et al. Classifying Positive Equivalence Relations , 1983, J. Symb. Log..
[8] Julia F. Knight,et al. Classification from a Computable Viewpoint , 2006, Bulletin of Symbolic Logic.
[9] Su Gao. Invariant Descriptive Set Theory , 2008 .
[10] V. Harizanov,et al. Isomorphism and Bi-Embeddability Relations on Computable Structures ∗ , 2010 .
[11] Sy-David Friedman,et al. On Σ11 equivalence relations over the natural numbers , 2012, Math. Log. Q..
[12] Yijia Chen,et al. Strong isomorphism reductions in complexity theory , 2011, The Journal of Symbolic Logic.
[13] Robert I. Soare,et al. Recursively enumerable sets and degrees - a study of computable functions and computability generated sets , 1987, Perspectives in mathematical logic.
[14] Sy-David Friedman,et al. The effective theory of Borel equivalence relations , 2009, Ann. Pure Appl. Log..
[15] Su Gao,et al. Computably Enumerable Equivalence Relations , 2001, Stud Logica.
[16] Harvey M. Friedman,et al. A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.