On the Construction of Polar Codes for Channels With Moderate Input Alphabet Sizes

Current deterministic algorithms for the construction of polar codes can only be argued to be practical for channels with small input alphabet sizes. In this paper, we show that any construction algorithm for channels with moderate input alphabet size, which follows the paradigm of “degrading after each polarization step,” will inherently be impractical with respect to a certain “hard” underlying channel. This result also sheds light on why the construction of low-density parity-check codes using density evolution is impractical for channels with moderate-sized input alphabets.

[1]  Venkatesan Guruswami,et al.  An Entropy Sumset Inequality and Polynomially Fast Convergence to Shannon Capacity Over All Alphabets , 2014, CCC.

[2]  R. Gallager Information Theory and Reliable Communication , 1968 .

[3]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[4]  David Burshtein,et al.  Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels , 2005, IEEE Transactions on Information Theory.

[5]  H. Piaggio Mathematical Analysis , 1955, Nature.

[6]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[7]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[8]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[9]  Simon Litsyn,et al.  Polar codes with mixed kernels , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[10]  Brian M. Kurkoski,et al.  Quantization of Binary-Input Discrete Memoryless Channels , 2011, IEEE Transactions on Information Theory.

[11]  Alexander Vardy,et al.  Constructing polar codes for non-binary alphabets and MACs , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[12]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[13]  Yoshiyuki Kabashima,et al.  Statistical mechanics of low-density parity check error-correcting codes over Galois fields , 2000 .

[14]  Eren Sasoglu Polar codes for discrete alphabets , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[15]  Ido Tal,et al.  Channel Upgradation for Non-Binary Input Alphabets and MACs , 2017, IEEE Transactions on Information Theory.

[16]  J. Steele The Cauchy–Schwarz Master Class: References , 2004 .

[17]  Ryuhei Mori,et al.  Performance and construction of polar codes on symmetric binary-input memoryless channels , 2009, 2009 IEEE International Symposium on Information Theory.

[18]  Cheng-Shang Chang Calculus , 2020, Bicycle or Unicycle?.

[19]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[20]  Ido Tal On the Construction of Polar Codes for Channels With Moderate Input Alphabet Sizes , 2017, IEEE Trans. Inf. Theory.

[21]  Emre Telatar,et al.  Polarization for arbitrary discrete memoryless channels , 2009, 2009 IEEE Information Theory Workshop.

[22]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[23]  Toshiyuki Tanaka,et al.  Source and Channel Polarization Over Finite Fields and Reed–Solomon Matrices , 2012, IEEE Transactions on Information Theory.

[24]  R. Jackson Inequalities , 2007, Algebra for Parents.

[25]  T. Aaron Gulliver,et al.  Upgraded Approximation of Non-Binary Alphabets for Polar Code Construction , 2013, ArXiv.

[26]  Brian M. Kurkoski,et al.  Quantization of Binary-Input Discrete Memoryless Channels, with Applications to LDPC Decoding , 2011, ArXiv.

[27]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[28]  Toshiyuki Tanaka,et al.  Non-binary polar codes using Reed-Solomon codes and algebraic geometry codes , 2010, 2010 IEEE Information Theory Workshop.

[29]  Emre Telatar,et al.  On the construction of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[30]  Alexander Barg,et al.  Construction of polar codes for arbitrary discrete memoryless channels , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).