Quantization of derived cotangent stacks and gauge theory on directed graphs
暂无分享,去创建一个
[1] Owen Gwilliam,et al. Factorization Algebras in Quantum Field Theory , 2021 .
[2] M. Anel,et al. Shifted symplectic reduction of derived critical loci , 2021, 2106.06625.
[3] M. Benini,et al. Classical BV formalism for group actions , 2021, Communications in Contemporary Mathematics.
[4] Wai-kit Yeung. Shifted symplectic and Poisson structures on global quotients , 2021, 2103.09491.
[5] M. Benini,et al. Categorification of algebraic quantum field theories , 2020, Letters in Mathematical Physics.
[6] M. Pflaum,et al. Deformation Quantization and Homological Reduction of a Lattice Gauge Model , 2019, Communications in Mathematical Physics.
[7] M. Benini,et al. Linear Yang–Mills Theory as a Homotopy AQFT , 2019, Communications in Mathematical Physics.
[8] M. Benini,et al. Higher Structures in Algebraic Quantum Field Theory , 2019, Fortschritte der Physik.
[9] M. Benini,et al. Homotopy theory of algebraic quantum field theories , 2018, Letters in Mathematical Physics.
[10] D. Calaque. Shifted cotangent stacks are shifted symplectic , 2016, Annales de la faculté des sciences de Toulouse Mathématiques.
[11] S. Arkhipov,et al. Homotopy limits in the category of dg-categories in terms of A ∞ -comodules , 2019 .
[12] Friedrich Haslinger. ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE , 2019 .
[13] J. Pridham. An outline of shifted Poisson structures and deformation quantisation in derived differential geometry. , 2018, 1804.07622.
[14] David Ben-Zvi,et al. Quantum character varieties and braided module categories , 2016, Selecta Mathematica.
[15] David Ben-Zvi,et al. Integrating quantum groups over surfaces , 2015, Journal of Topology.
[16] B. Toën,et al. Shifted Poisson structures and deformation quantization , 2015, 1506.03699.
[17] P. Safronov. SYMPLECTIC IMPLOSION AND THE GROTHENDIECK-SPRINGER RESOLUTION , 2014, 1411.2962.
[18] Owen Gwilliam,et al. Factorization Algebras in Quantum Field Theory: Volume 1 , 2016 .
[19] J.P.Pridham,et al. Deformation quantisation for unshifted symplectic structures on derived Artin stacks , 2016, Selecta Mathematica.
[20] J. Pridham. Shifted Poisson and symplectic structures on derived N ‐stacks , 2015, 1504.01940.
[21] B. Toen. Derived Algebraic Geometry and Deformation Quantization , 2014, 1403.6995.
[22] Bertrand Toen,et al. Derived Algebraic Geometry , 2014, 1401.1044.
[23] E. Riehl,et al. Six model structures for DG-modules over DGAs: model category theory in homological action , 2013, 1310.1159.
[24] B. Toën,et al. Shifted symplectic structures , 2011, 1111.3209.
[25] D. Gaitsgory,et al. Crystals and D-modules , 2011, 1111.2087.
[26] V. Drinfeld,et al. On Some Finiteness Questions for Algebraic Stacks , 2011, 1108.5351.
[27] L. Positselski. Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence , 2009, 0905.2621.
[28] M. Pflaum,et al. A homological approach to singular reduction in deformation quantization , 2006, math-ph/0603078.
[29] Bernhard Keller,et al. On differential graded categories , 2006, math/0601185.
[30] Goncalo Tabuada. Algèbre homologique Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , 2004, math/0407338.
[31] G. Vezzosi,et al. Homotopical Algebraic Geometry II: Geometric Stacks and Applications , 2004, math/0404373.
[32] S. Waldmann,et al. BRST Cohomology and Phase Space Reduction in Deformation Quantization , 1999, math/9901015.
[33] C. Simpson,et al. Descente pour les n-champs (Descent for n-stacks) , 1998, math/9807049.
[34] C. Simpson. The Hodge filtration on nonabelian cohomology , 1996, alg-geom/9604005.
[35] J. Baez. Spin network states in gauge theory , 1994, gr-qc/9411007.