Quantization of derived cotangent stacks and gauge theory on directed graphs

We study the quantization of the canonical unshifted Poisson structure on the derived cotangent stack T ∗ [ X/G ] of a quotient stack, where X is a smooth affine scheme with an action of a (reductive) smooth affine group scheme G . This is achieved through an ´etale resolution of T ∗ [ X/G ] by stacky CDGAs that allows for an explicit description of the canonical Poisson structure on T ∗ [ X/G ] and of the dg-category of modules quantizing it. These techniques are applied to construct a dg-category-valued prefactorization algebra that quantizes a gauge theory on directed graphs

[1]  Owen Gwilliam,et al.  Factorization Algebras in Quantum Field Theory , 2021 .

[2]  M. Anel,et al.  Shifted symplectic reduction of derived critical loci , 2021, 2106.06625.

[3]  M. Benini,et al.  Classical BV formalism for group actions , 2021, Communications in Contemporary Mathematics.

[4]  Wai-kit Yeung Shifted symplectic and Poisson structures on global quotients , 2021, 2103.09491.

[5]  M. Benini,et al.  Categorification of algebraic quantum field theories , 2020, Letters in Mathematical Physics.

[6]  M. Pflaum,et al.  Deformation Quantization and Homological Reduction of a Lattice Gauge Model , 2019, Communications in Mathematical Physics.

[7]  M. Benini,et al.  Linear Yang–Mills Theory as a Homotopy AQFT , 2019, Communications in Mathematical Physics.

[8]  M. Benini,et al.  Higher Structures in Algebraic Quantum Field Theory , 2019, Fortschritte der Physik.

[9]  M. Benini,et al.  Homotopy theory of algebraic quantum field theories , 2018, Letters in Mathematical Physics.

[10]  D. Calaque Shifted cotangent stacks are shifted symplectic , 2016, Annales de la faculté des sciences de Toulouse Mathématiques.

[11]  S. Arkhipov,et al.  Homotopy limits in the category of dg-categories in terms of A ∞ -comodules , 2019 .

[12]  Friedrich Haslinger ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE , 2019 .

[13]  J. Pridham An outline of shifted Poisson structures and deformation quantisation in derived differential geometry. , 2018, 1804.07622.

[14]  David Ben-Zvi,et al.  Quantum character varieties and braided module categories , 2016, Selecta Mathematica.

[15]  David Ben-Zvi,et al.  Integrating quantum groups over surfaces , 2015, Journal of Topology.

[16]  B. Toën,et al.  Shifted Poisson structures and deformation quantization , 2015, 1506.03699.

[17]  P. Safronov SYMPLECTIC IMPLOSION AND THE GROTHENDIECK-SPRINGER RESOLUTION , 2014, 1411.2962.

[18]  Owen Gwilliam,et al.  Factorization Algebras in Quantum Field Theory: Volume 1 , 2016 .

[19]  J.P.Pridham,et al.  Deformation quantisation for unshifted symplectic structures on derived Artin stacks , 2016, Selecta Mathematica.

[20]  J. Pridham Shifted Poisson and symplectic structures on derived N ‐stacks , 2015, 1504.01940.

[21]  B. Toen Derived Algebraic Geometry and Deformation Quantization , 2014, 1403.6995.

[22]  Bertrand Toen,et al.  Derived Algebraic Geometry , 2014, 1401.1044.

[23]  E. Riehl,et al.  Six model structures for DG-modules over DGAs: model category theory in homological action , 2013, 1310.1159.

[24]  B. Toën,et al.  Shifted symplectic structures , 2011, 1111.3209.

[25]  D. Gaitsgory,et al.  Crystals and D-modules , 2011, 1111.2087.

[26]  V. Drinfeld,et al.  On Some Finiteness Questions for Algebraic Stacks , 2011, 1108.5351.

[27]  L. Positselski Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence , 2009, 0905.2621.

[28]  M. Pflaum,et al.  A homological approach to singular reduction in deformation quantization , 2006, math-ph/0603078.

[29]  Bernhard Keller,et al.  On differential graded categories , 2006, math/0601185.

[30]  Goncalo Tabuada Algèbre homologique Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , 2004, math/0407338.

[31]  G. Vezzosi,et al.  Homotopical Algebraic Geometry II: Geometric Stacks and Applications , 2004, math/0404373.

[32]  S. Waldmann,et al.  BRST Cohomology and Phase Space Reduction in Deformation Quantization , 1999, math/9901015.

[33]  C. Simpson,et al.  Descente pour les n-champs (Descent for n-stacks) , 1998, math/9807049.

[34]  C. Simpson The Hodge filtration on nonabelian cohomology , 1996, alg-geom/9604005.

[35]  J. Baez Spin network states in gauge theory , 1994, gr-qc/9411007.