A new n-type half-Heusler thermoelectric material NbCoSb

[1]  K. Bartholomé,et al.  Thermoelectric Modules Based on Half-Heusler Materials Produced in Large Quantities , 2014, Journal of Electronic Materials.

[2]  Gang Chen,et al.  Effect of Hf Concentration on Thermoelectric Properties of Nanostructured N‐Type Half‐Heusler Materials HfxZr1–xNiSn0.99Sb0.01 , 2013 .

[3]  Gang Chen,et al.  Thermoelectric Property Study of Nanostructured p‐Type Half‐Heuslers (Hf, Zr, Ti)CoSb0.8Sn0.2 , 2013 .

[4]  C. Uher,et al.  Thermoelectric performance of nanostructured p-type Zr0.5Hf0.5Co0.4Rh0.6Sb1−xSnx half-Heusler alloys , 2013 .

[5]  Jingfeng Li,et al.  Thermoelectric properties of fine-grained FeVSb half-Heusler alloys tuned to p-type by substituting vanadium with titanium , 2013 .

[6]  Xinbing Zhao,et al.  High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates , 2012 .

[7]  G. J. Snyder,et al.  Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds , 2012 .

[8]  Hui Wang,et al.  Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2 , 2012 .

[9]  Di Wu,et al.  Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials , 2011 .

[10]  A. Shakouri Recent Developments in Semiconductor Thermoelectric Physics and Materials , 2011 .

[11]  Qian Zhang,et al.  Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2.7Se0.3 Nanocomposites , 2011 .

[12]  Gang Chen,et al.  Enhancement in Thermoelectric Figure‐Of‐Merit of an N‐Type Half‐Heusler Compound by the Nanocomposite Approach , 2011 .

[13]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[14]  Gang Chen,et al.  Enhanced thermoelectric figure of merit of p-type half-Heuslers. , 2011, Nano letters.

[15]  Hsin-Ming Cheng,et al.  Structural and thermoelectric properties of HfNiSn half-Heusler thin films , 2010 .

[16]  M. Kanatzidis,et al.  On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. , 2010, Journal of the American Chemical Society.

[17]  Xinbing Zhao,et al.  High-performance half-Heusler thermoelectric materials Hf1−x ZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering , 2009 .

[18]  Jihui Yang,et al.  Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties , 2008 .

[19]  M. A. Kouacou,et al.  Onset of itinerant ferromagnetism associated with semiconductor-metal transition in TixNb1 − xCoSn half Heusler solid solution compounds , 2008 .

[20]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[21]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[22]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[23]  H. Adachi,et al.  Thermoelectric Properties of Doped Half-Heuslers NbCoSn1-xSbx and Nb0.99Ti0.01CoSn1-xSbx , 2006 .

[24]  S. Yamanaka,et al.  Thermoelectric Properties of (Ti,Zr,Hf)CoSb Type Half-Heusler Compounds , 2005 .

[25]  S. Yamanaka,et al.  High temperature thermoelectric properties of CoNb1−xHfxSn1−ySby half-Heusler compounds , 2004 .

[26]  E. Bauer,et al.  Thermoelectric properties of ternary transition metal antimonides , 2000 .

[27]  J. Toboła,et al.  Electronic phase diagram of the XTZ (X=Fe, Co, Ni; T=Ti, V, Zr, Nb, Mn; Z=Sn, Sb) semi-Heusler compounds , 2000 .

[28]  W. Jeitschko,et al.  Ternary transition metal antimonides and bismuthides with MgAgAs-type and filled NiAs-type structure 1 Dedicated to Professor Riccardo Ferro on the occasion of his 70th birthday. 1 , 1997 .

[29]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[30]  Xinbing Zhao,et al.  Thermoelectric properties of FeVSb half-Heusler compounds by levitation melting and spark plasma sintering , 2013 .

[31]  Junichiro Shiomi,et al.  Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75−xTixZr0.25NiSn0.99Sb0.01 , 2013 .

[32]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[33]  Gang Chen,et al.  Recent advances in thermoelectric nanocomposites , 2012 .

[34]  G. V. Chester,et al.  Solid State Physics , 2000 .