Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: A sliding DNA clamp

[1]  P. Burgers,et al.  Saccharomyces cerevisiae replication factor C. I. Purification and characterization of its ATPase activity. , 1991, The Journal of biological chemistry.

[2]  P. Burgers Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. , 1991, The Journal of biological chemistry.

[3]  A. Kwong,et al.  Synthesis of DNA by DNA polymerase ε in vitro , 1991 .

[4]  M. O’Donnell,et al.  Analysis of the ATPase subassembly which initiates processive DNA synthesis by DNA polymerase III holoenzyme. , 1991, The Journal of biological chemistry.

[5]  Sung-Hou Kim,et al.  Sparse matrix sampling: a screening method for crystallization of proteins , 1991 .

[6]  M. O’Donnell,et al.  Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. , 1991, The Journal of biological chemistry.

[7]  T. Sixma,et al.  Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli , 1991, Nature.

[8]  W. Lim,et al.  The role of internal packing interactions in determining the structure and stability of a protein. , 1991, Journal of molecular biology.

[9]  A. Kwong,et al.  Studies on the activator 1 protein complex, an accessory factor for proliferating cell nuclear antigen-dependent DNA polymerase delta. , 1991, The Journal of biological chemistry.

[10]  C. Sander,et al.  Database of homology‐derived protein structures and the structural meaning of sequence alignment , 1991, Proteins.

[11]  C. Branden,et al.  Introduction to protein structure , 1991 .

[12]  D. Eisenberg,et al.  A method to identify protein sequences that fold into a known three-dimensional structure. , 1991, Science.

[13]  J. Skehel,et al.  Refinement of the influenza virus hemagglutinin by simulated annealing. , 1991, Journal of molecular biology.

[14]  A. McPherson,et al.  Current approaches to macromolecular crystallization. , 1990, European journal of biochemistry.

[15]  P. Burgers,et al.  Molecular cloning, structure and expression of the yeast proliferating cell nuclear antigen gene. , 1990, Nucleic acids research.

[16]  M. O’Donnell,et al.  Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps. , 1990, The Journal of biological chemistry.

[17]  M. O’Donnell,et al.  Processive replication is contingent on the exonuclease subunit of DNA polymerase III holoenzyme. , 1990, The Journal of biological chemistry.

[18]  P. V. von Hippel,et al.  Structural and enzymatic studies of the T4 DNA replication system. I. Physical characterization of the polymerase accessory protein complex. , 1989, The Journal of biological chemistry.

[19]  J. Priestle,et al.  RIBBON: a stereo cartoon drawing program for proteins , 1988 .

[20]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[21]  A. Kornberg,et al.  DNA polymerase III holoenzyme of Escherichia coli. III. Distinctive processive polymerases reconstituted from purified subunits. , 1988, The Journal of biological chemistry.

[22]  A. Kornberg,et al.  DNA polymerase III holoenzyme of Escherichia coli. II. A novel complex including the gamma subunit essential for processive synthesis. , 1988, The Journal of biological chemistry.

[23]  M. O’Donnell,et al.  Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli. , 1987, The Journal of biological chemistry.

[24]  R. Bravo,et al.  Cloning and sequence of the human nuclear protein cyclin: homology with DNA-binding proteins. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[26]  K. Johanson,et al.  Chemical characterization and purification of the beta subunit of the DNA polymerase III holoenzyme from an overproducing strain. , 1986, The Journal of biological chemistry.

[27]  T. A. Jones,et al.  Using known substructures in protein model building and crystallography. , 1986, The EMBO journal.

[28]  A. Kornberg,et al.  Complete replication of templates by Escherichia coli DNA polymerase III holoenzyme. , 1985, The Journal of biological chemistry.

[29]  T. Steitz,et al.  Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP , 2020, Nature.

[30]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[31]  H. Ohmori,et al.  Structural analysis of the dnaA and dnaN genes of Escherichia coli. , 1984, Gene.

[32]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[33]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[34]  David Eisenberg,et al.  Unbiased three-dimensional refinement of heavy-atom parameters by correlation of origin-removed Patterson functions , 1983 .

[35]  A. Kornberg,et al.  ATP activation of DNA polymerase III holoenzyme of Escherichia coli. I. ATP-dependent formation of an initiation complex with a primed template. , 1982, The Journal of biological chemistry.

[36]  A. Kornberg,et al.  ATP activation of DNA polymerase III holoenzyme from Escherichia coli. II. Initiation complex: stoichiometry and reactivity. , 1982, The Journal of biological chemistry.

[37]  R. Bambara,et al.  Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. , 1981, The Journal of biological chemistry.

[38]  K. Johanson,et al.  Purification and characterization of the beta subunit of the DNA polymerase III holoenzyme of Escherichia coli. , 1980, The Journal of biological chemistry.

[39]  S. Wickner Mechanism of DNA elongation catalyzed by Escherichia coli DNA polymerase III, dnaZ protein, and DNA elongation factors I and III. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[41]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[42]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[43]  B. Stillman,et al.  Functions of replication factor C and proliferating-cell nuclear antigen : Functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T 4 ( simian virus 40 DNA replication / DNA binding / ATPase / evolution ) , 2022 .

[44]  P. Burgers,et al.  The yeast analog of mammalian cyclin / proliferating-cell nuclear antigen interacts with mammalian DNA polymerase 6 ( DNA replication / DNA polymerase II / processivity / ceil cycle control / Saccharomyces cerevisiae ) , 2022 .