Lessons from the use of a long-term energy model for consequential life cycle assessment: The BTL case

[1]  D. Meadows,et al.  The Limits to Growth , 2018, Green Planet Blues.

[2]  W. Nordhaus Economic Growth and Climate: The Carbon Dioxide Problem , 1976 .

[3]  Leslie G. Fishbone,et al.  Markal, a linear‐programming model for energy systems analysis: Technical description of the bnl version , 1981 .

[4]  B. Weidema Market aspects in product life cycle inventory methodology , 1993 .

[5]  Bo Pedersen Weidema,et al.  Marginal production technologies for life cycle inventories , 1999 .

[6]  T. Ekvall Cleaner production tools: LCA and beyond , 2002 .

[7]  John D. Sterman,et al.  All models are wrong: reflections on becoming a systems scientist† , 2002 .

[8]  Patricia L. Mokhtarian,et al.  Life cycle assessment of fuel cell vehicles a methodology example of input data treatment for future technologies , 2002 .

[9]  G. Rebitzera,et al.  Life cycle assessment Part 1 : Framework , goal and scope definition , inventory analysis , and applications , 2004 .

[10]  Vincent Mahieu,et al.  Well-to-wheels analysis of future automotive fuels and powertrains in the european context , 2004 .

[11]  Julio M. Ottino,et al.  Complex systems and networks: Challenges and opportunities for chemical and biological engineers , 2004 .

[12]  Mary Ann Curran,et al.  The international workshop on electricity data for life cycle inventories , 2005 .

[13]  Roland W. Scholz,et al.  Scenario Modelling in Prospective LCA of Transport Systems. Application of Formative Scenario Analysis (11 pp) , 2005 .

[14]  R. Loulou,et al.  Documentation for the TIMES Model PART I April 2005 , 2005 .

[15]  Rikke Dorothea Andersen,et al.  Rebound effects of price differences , 2008 .

[16]  S. Iniyan,et al.  A review of energy models , 2006 .

[17]  Anders S. G. Andrae,et al.  Attributional and Consequential Environmental Assessment of the Shift to Lead-Free Solders (10 pp) , 2006 .

[18]  Wim Turkenburg,et al.  Implications of technological learning on the prospects for renewable energy technologies in Europe , 2007 .

[19]  Bo Pedersen Weidema,et al.  Shift in the marginal supply of vegetable oil , 2008 .

[20]  Ulrich Fahl,et al.  Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES , 2007 .

[21]  Anna Björklund,et al.  Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion , 2007 .

[22]  R. Loulou,et al.  The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model , 2007 .

[23]  Jannick H. Schmidt System delimitation in agricultural consequential LCA , 2008 .

[24]  Jacinto F. Fabiosa,et al.  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change , 2008, Science.

[25]  Ofir D. Rubin,et al.  Greenhouse Gas Impacts of Ethanol from Iowa Corn: Life Cycle Analysis versus System-wide Accounting , 2008 .

[26]  Scott Duncan,et al.  A survey of unresolved problems in life cycle assessment , 2008 .

[27]  Martin Pehnt,et al.  Consequential environmental system analysis of expected offshore wind electricity production in Germany , 2008 .

[28]  Hongli Feng,et al.  Greenhouse gas impacts of ethanol from Iowa corn: Life cycle assessment versus system wide approach , 2010 .

[29]  P. Nielsen,et al.  Life cycle inventory modelling of land use induced by crop consumption , 2008 .

[30]  John J. Reap,et al.  A survey of unresolved problems in life cycle assessment , 2008 .

[31]  G. Heath,et al.  Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? , 2009, Environmental science & technology.

[32]  Shirley Fagnen Analyse du cycle de vie axée sur les conséquences d'un biocarburant de deuxième génération à base de saule , 2009 .

[33]  Brian Vad Mathiesen,et al.  Uncertainties related to the identification of the marginal energy technology in consequential life cycle assessments , 2009 .

[34]  S. Gheewala,et al.  Impacts of Thai bio-ethanol policy target on land use and greenhouse gas emissions , 2009 .

[35]  R. Heijungs,et al.  Guidelines for application of deepened and broadened LCA , 2009 .

[36]  A. Faaij,et al.  Fischer–Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis , 2009 .

[37]  Gjalt Huppes,et al.  Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain , 2009 .

[38]  Rainer Zah,et al.  Global environmental consequences of increased biodiesel consumption in Switzerland: consequential life cycle assessment , 2009 .

[39]  S. Soimakallio,et al.  Assessing the greenhouse gas emissions of waste-derived ethanol in accordance with the EU RED methodology for biofuels , 2009 .

[40]  Douglas J. Reinemann,et al.  Applying life-cycle assessment to low carbon fuel standards--How allocation choices influence carbon intensity for renewable transportation fuels , 2010 .

[41]  Not Indicated,et al.  International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance , 2010 .

[42]  Dileep K. Birur,et al.  Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis , 2010 .

[43]  Subhes C. Bhattacharyya,et al.  A review of energy system models , 2010 .

[44]  M. Margni,et al.  Considering time in LCA: dynamic LCA and its application to global warming impact assessments. , 2010, Environmental science & technology.

[45]  David D. Hsu,et al.  Life cycle environmental impacts of selected U.S. ethanol production and use pathways in 2022. , 2010, Environmental science & technology.

[46]  J. Luciani,et al.  Technical and economical evaluation of enhanced biomass to liquid fuel processes , 2010 .

[47]  E. Robert,et al.  Indirect Land Use Change From Increased Biofuels Demand - Comparison of Models and Results for Marginal Biofuels Production from Different Feedstocks , 2010 .

[48]  Heather L MacLean,et al.  Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. , 2010, Bioresource technology.

[49]  R. Samson,et al.  Assessing non-marginal variations with consequential LCA: Application to European energy sector , 2011 .

[50]  Jürgen Reinhard,et al.  Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland , 2011 .

[51]  T. Hertel,et al.  Impacts of EU biofuels directives on global markets and EU environmental quality: An integrated PE, global CGE analysis , 2011 .

[52]  J. Murphy,et al.  The indirect effects of biofuels and what to do about them: the case of grass biomethane and its impact on livestock , 2011 .

[53]  Aie World Energy Outlook 2011 , 2011 .

[54]  J. DeCicco Biofuels and carbon management , 2012, Climatic Change.

[55]  U. K. Rout,et al.  Energy and emissions forecast of China over a long-time horizon , 2011 .

[56]  Anders Hammer Strømman,et al.  Life cycle assessment of bioenergy systems: state of the art and future challenges. , 2011, Bioresource technology.

[57]  Carole Hohwiller La production de carburants liquides par thermoconversion de biomasse lignocellulosique : évaluation pour le système énergétique français futur , 2011 .

[58]  Hong Huo,et al.  Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context , 2011 .

[59]  J. M. Earles,et al.  Consequential life cycle assessment: a review , 2011 .

[60]  Michael Q. Wang,et al.  Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes , 2011 .

[61]  Reinout Heijungs,et al.  Lights and shadows in consequential LCA , 2012, The International Journal of Life Cycle Assessment.

[62]  Adolf Acquaye,et al.  Biofuels and their potential to aid the UK towards achieving emissions reduction policy targets , 2012 .

[63]  S. Mima,et al.  European climate -- energy security nexus: A model based scenario analysis , 2012 .

[64]  R. Samson,et al.  Macroanalysis of the economic and environmental impacts of a 2005–2025 European Union bioenergy policy using the GTAP model and life cycle assessment , 2012 .

[65]  R. Newman Promotion of the use of energy from renewable sources , 2014 .

[66]  F. Creutzig,et al.  Using Attributional Life Cycle Assessment to Estimate Climate‐Change Mitigation Benefits Misleads Policy Makers , 2014 .

[67]  Marko Wagner,et al.  Global Trade Analysis Modeling And Applications , 2016 .