Structure and substrate fingerprint of aminopeptidase P from Plasmodium falciparum.

Malaria is one of the world's most prevalent parasitic diseases, with over 200 million cases annually. Alarmingly, the spread of drug-resistant parasites threatens the effectiveness of current antimalarials and has made the development of novel therapeutic strategies a global health priority. Malaria parasites have a complicated lifecycle, involving an asymptomatic 'liver stage' and a symptomatic 'blood stage'. During the blood stage, the parasites utilise a proteolytic cascade to digest host hemoglobin, which produces free amino acids absolutely necessary for parasite growth and reproduction. The enzymes required for hemoglobin digestion are therefore attractive therapeutic targets. The final step of the cascade is catalyzed by several metalloaminopeptidases, including aminopeptidase P (APP). We developed a novel platform to examine the substrate fingerprint of APP from Plasmodium falciparum (PfAPP) and to show that it can catalyze the removal of any residue immediately prior to a proline. Further, we have determined the crystal structure of PfAPP and present the first examination of the 3D structure of this essential malarial enzyme. Together, these analyses provide insights into potential mechanisms of inhibition that could be used to develop novel antimalarial therapeutics.

[1]  Shailesh N Mistry,et al.  Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions. , 2016, European journal of medicinal chemistry.

[2]  L. Kalinowski,et al.  Activity profiling of aminopeptidases in cell lysates using a fluorogenic substrate library. , 2016, Biochimie.

[3]  Shailesh N Mistry,et al.  Two-pronged attack: dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors. , 2014, Journal of medicinal chemistry.

[4]  D. Kwiatkowski,et al.  Spread of artemisinin resistance in Plasmodium falciparum malaria. , 2014, The New England journal of medicine.

[5]  S. McGowan Working in concert: the metalloaminopeptidases from Plasmodium falciparum. , 2013, Current opinion in structural biology.

[6]  J. Dalton,et al.  Synthesis and Structure − Activity Relationships of Phosphonic Arginine Mimetics as Inhibitors of the M 1 and M 17 Aminopeptidases from Plasmodium falciparum , 2013 .

[7]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[8]  G. Pradel,et al.  The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention? , 2012, International journal for parasitology. Drugs and drug resistance.

[9]  Yi-Lun Lin,et al.  Structural basis for multifunctional roles of mammalian aminopeptidase N , 2012, Proceedings of the National Academy of Sciences.

[10]  J. Whisstock,et al.  X-ray crystal structure and specificity of the Plasmodium falciparum malaria aminopeptidase PfM18AAP. , 2012, Journal of molecular biology.

[11]  J. Whisstock,et al.  Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum , 2012, PloS one.

[12]  J. Dalton,et al.  The Plasmodium falciparum Malaria M1 Alanyl Aminopeptidase (PfA-M1): Insights of Catalytic Mechanism and Function from MD Simulations , 2011, PloS one.

[13]  J. Whisstock,et al.  Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases , 2011, Proceedings of the National Academy of Sciences.

[14]  Grazyna Kochan,et al.  Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming , 2011, Proceedings of the National Academy of Sciences.

[15]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[16]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[17]  A. Goldberg,et al.  Structural Basis For Antigenic Peptide Precursor Processing by the Endoplasmic Reticulum Aminopeptidase ERAP1 , 2011, Nature Structural &Molecular Biology.

[18]  Tatsuya Akutsu,et al.  The role of internal duplication in the evolution of multi-domain proteins , 2010, Biosyst..

[19]  J. Nyalwidhe,et al.  Plasmodium falciparum PfA-M1 aminopeptidase is trafficked via the parasitophorous vacuole and marginally delivered to the food vacuole , 2010, Malaria Journal.

[20]  J. Dalton,et al.  Aminopeptidases of malaria parasites: new targets for chemotherapy. , 2010, Infectious disorders drug targets.

[21]  Kevin Cowtan,et al.  Recent developments in classical density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[22]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[23]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[24]  Woldeamanuel A. Birru,et al.  Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases , 2010, Proceedings of the National Academy of Sciences.

[25]  M. Bogyo,et al.  Aminopeptidase Fingerprints, an Integrated Approach for Identification of Good Substrates and Optimal Inhibitors* , 2009, The Journal of Biological Chemistry.

[26]  S. Dalal,et al.  Evidence for Catalytic Roles for Plasmodium falciparum Aminopeptidase P in the Food Vacuole and Cytosol* , 2009, The Journal of Biological Chemistry.

[27]  J. Whisstock,et al.  Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase , 2009, Proceedings of the National Academy of Sciences.

[28]  Norman Stein,et al.  CHAINSAW: a program for mutating pdb files used as templates in molecular replacement , 2008 .

[29]  Z. Rao,et al.  Structure of Human Cytosolic X-prolyl Aminopeptidase , 2008, Journal of Biological Chemistry.

[30]  A. Bell,et al.  Chemical Target Validation Studies of Aminopeptidase in Malaria Parasites Using α-Aminoalkylphosphonate and Phosphonopeptide Inhibitors , 2008, Antimicrobial Agents and Chemotherapy.

[31]  S. Dalal,et al.  Roles for Two Aminopeptidases in Vacuolar Hemoglobin Catabolism in Plasmodium falciparum* , 2007, Journal of Biological Chemistry.

[32]  J. Dalton,et al.  The M18 Aspartyl Aminopeptidase of the Human Malaria Parasite Plasmodium falciparum* , 2007, Journal of Biological Chemistry.

[33]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[34]  A. Bell,et al.  Characterization of the Plasmodium falciparum M17 Leucyl Aminopeptidase , 2007, Journal of Biological Chemistry.

[35]  Jun Liu,et al.  Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J Mitchell Guss,et al.  Kinetic and crystallographic analysis of mutant Escherichia coli aminopeptidase P: insights into substrate recognition and the mechanism of catalysis. , 2006, Biochemistry.

[37]  R. Huber,et al.  Crystal structures of the tricorn interacting factor F3 from Thermoplasma acidophilum, a zinc aminopeptidase in three different conformations. , 2005, Journal of molecular biology.

[38]  Yingyao Zhou,et al.  Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. , 2004, Genome research.

[39]  I. Gluzman,et al.  A Plasmodium falciparum Dipeptidyl Aminopeptidase I Participates in Vacuolar Hemoglobin Degradation* , 2004, Journal of Biological Chemistry.

[40]  M. Maher,et al.  Structure of Escherichia coli aminopeptidase P in complex with the inhibitor apstatin. , 2004, Acta crystallographica. Section D, Biological crystallography.

[41]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[42]  R. Koelsch,et al.  A continuous fluorimetric assay for aminopeptidase P detailed analysis of product inhibition. , 2003, Analytical biochemistry.

[43]  Jianzhi Zhang Evolution by gene duplication: an update , 2003 .

[44]  B. Friguet,et al.  Characterization and role of protozoan parasite proteasomes. , 2003, Trends in parasitology.

[45]  I. Florent,et al.  Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase , 2002, Parasitology.

[46]  P. Rosenthal Hydrolysis of erythrocyte proteins by proteases of malaria parasites , 2002, Current opinion in hematology.

[47]  Dustin J Maly,et al.  Expedient solid-phase synthesis of fluorogenic protease substrates using the 7-amino-4-carbamoylmethylcoumarin (ACC) fluorophore. , 2002, The Journal of organic chemistry.

[48]  W. Simmons,et al.  Cardioprotective effects of the aminopeptidase P inhibitor apstatin: studies on ischemia/reperfusion injury in the isolated rat heart. , 1999, Journal of cardiovascular pharmacology.

[49]  Satoshi Omura,et al.  Proteasome Inhibitors Block Development ofPlasmodium spp , 1998, Antimicrobial Agents and Chemotherapy.

[50]  C. Bond,et al.  Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  B. O'connor,et al.  Proline specific peptidases. , 1997, Biochimica et biophysica acta.

[52]  W. Simmons,et al.  Purification and properties of membrane-bound aminopeptidase P from rat lung. , 1995, Biochemistry.

[53]  C D Fitch,et al.  Hemozoin production by Plasmodium falciparum: variation with strain and exposure to chloroquine. , 1993, Biochimica et biophysica acta.

[54]  I. Rusu,et al.  Aminopeptidase P from human leukocytes. , 1992, European journal of biochemistry.

[55]  G. Vanhoof,et al.  Kininase activity in human platelets: cleavage of the Arg1-Pro2 bond of bradykinin by aminopeptidase P. , 1992, Biochemical pharmacology.

[56]  N. Hooper,et al.  Inhibition by converting enzyme inhibitors of pig kidney aminopeptidase P. , 1992, Hypertension.

[57]  Morrison Db,et al.  Alterations in some Constituents of the Monkey Erythrocyte infected with Plasmodium knowlesi as related to Pigment Formation. , 1948 .

[58]  E. Ball,et al.  Studies on malarial parasites; chemical and metabolic changes during growth and multiplication in vivo and in vitro. , 1948, The Journal of biological chemistry.

[59]  M. Poręba,et al.  Positional scanning substrate combinatorial library (PS-SCL) approach to define caspase substrate specificity. , 2014, Methods in molecular biology.

[60]  Kochan Grazyna,et al.  小胞体アミノペプチダーゼ‐1(ERAP1)の結晶構造は,N末端ペプチドトリミングの分子基盤を明らかにする , 2011 .

[61]  D. Sullivan,et al.  Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. , 1997, Annual review of microbiology.