Locally convex topologies and control theory

Using recent characterisations of topologies of spaces of vector fields for general regularity classes—e.g., Lipschitz, finitely differentiable, smooth, and real analytic—characterisations are provided of geometric control systems that utilise these topologies. These characterisations can be expressed as joint regularity properties of the system as a function of state and control. It is shown that the common characterisations of control systems in terms of their joint dependence on state and control are, in fact, representations of the fact that the natural mapping from the control set to the space of vector fields is continuous. The classes of control systems defined are new, even in the smooth category. However, in the real analytic category, the class of systems defined is new and deep. What are called “real analytic control systems” in this article incorporate the real analytic topology in a way that has hitherto been unexplored. Using this structure, it is proved, for example, that the trajectories of a real analytic control system corresponding to a fixed open-loop control depend on initial condition in a real analytic manner. It is also proved that control-affine systems always have the appropriate joint dependence on state and control. This shows, for example, that the trajectories of a control-affine system corresponding to a fixed open-loop control depend on initial condition in the manner prescribed by the regularity of the vector fields.

[1]  Héctor J. Sussmann,et al.  Why Real Analyticity is Important in Control Theory , 1990 .

[2]  S. Semmes Topological Vector Spaces , 2003 .

[3]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[4]  Matthias Kawski,et al.  High-order small-time local controllability , 2017 .

[5]  J. Horváth Topological Vector Spaces and Distributions , 2012 .

[6]  P. Michor,et al.  Natural operations in differential geometry , 1993 .

[7]  M. Barbero-Liñán,et al.  Geometric Approach to Pontryagin’s Maximum Principle , 2008, 0805.1169.

[8]  H. Sussmann Orbits of families of vector fields and integrability of distributions , 1973 .

[9]  Harold R. Parks,et al.  A Primer of Real Analytic Functions , 1992 .

[10]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[11]  K. Cieliebak,et al.  From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds , 2012 .

[12]  Andrew D. Lewis,et al.  Tautological control systems , 2014, 53rd IEEE Conference on Decision and Control.

[13]  Eduardo D. Sontag,et al.  Deterministic Finite Dimensional Systems , 1988 .

[14]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[15]  D. Segal ALGEBRA: (Graduate Texts in Mathematics, 73) , 1982 .

[16]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[17]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .

[18]  John Fitch,et al.  Course notes , 1975, SIGS.

[19]  A. Pietsch,et al.  A. I. Tulcea and C. I. Tulcea, Topics in the Theory of Lifting. (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48). X + 188 S. Berlin/Heidelberg/New York 1969. Springer‐Verlag. Preis geb. DM 36,‐ . , 1970 .

[20]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[21]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[22]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[23]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[24]  Anatolii A. Logunov,et al.  Analytic functions of several complex variables , 1965 .

[25]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[26]  J. Swart,et al.  The Metric Theory of Tensor Products (Grothendieck's Résumé Revisited) Part 1: Tensor Norms , 2002 .

[27]  Eberhard Freitag,et al.  Analytic Functions of Several Complex Variables , 2011 .

[28]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[29]  Alberto Ibort,et al.  A Panorama of Geometrical Optimal Control Theory , 2003 .

[30]  M. Chyba,et al.  Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.

[31]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[32]  D. Saunders The Geometry of Jet Bundles , 1989 .

[33]  H. Sussmann Some optimal control applications of real-analytic stratifications and desingularization , 1998 .

[34]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[35]  E. Mangino (LF) ‐ Spaces and Tensor Products , 1997 .

[36]  The space of real-analytic functions has no basis , 2000 .

[37]  L. Hörmander,et al.  An introduction to complex analysis in several variables , 1973 .

[38]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[39]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[40]  Gianna Stefani,et al.  Controllability along a trajectory: a variational approach , 1993 .

[41]  R. Gamkrelidze,et al.  THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .

[42]  P. Michor Manifolds of differentiable mappings , 1980 .

[43]  T. Nagano Linear differential systems with singularities and an application to transitive Lie algebras , 1966 .

[44]  Geometric Aspects of the Maximum Principle and Lifts over a Bundle Map , 2002, math/0212055.

[45]  Matthias Kawski High-order small-time local controllability , 2017 .

[46]  J. Coron Linearized Control Systems and Applications to Smooth Stabilization , 1994 .

[47]  Hans Jarchow,et al.  Locally convex spaces , 1981 .

[48]  R. V. Gamkrelidze,et al.  Principles of optimal control theory , 1977 .

[49]  William H. Ruckle,et al.  Nuclear Locally Convex Spaces , 1972 .

[50]  John L. Casti Introduction to the Mathematical Theory of Control Processes, Volume I: Linear Equations and Quadratic Criteria, Volume II: Nonlinear Processes , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[51]  J. C. P. Bus,et al.  The Lagrange multiplier rule on manifolds and optimal control of nonlinear systems , 1982 .

[52]  Paweł Domański,et al.  Notes on real analytic functions and classical operators , 2012 .

[53]  A. Deitmar,et al.  Strong vector valued integrals , 2011, 1102.1246.

[54]  Klaus Fritzsche,et al.  From holomorphic functions to complex manifolds , 2002 .

[55]  Eduardo Sontag Universal nonsingular controls , 1993 .

[56]  H. Fédérer Geometric Measure Theory , 1969 .

[57]  D. Vogt A Fundamental System of Seminorms for $A(K)$ , 2013, 1309.6292.

[58]  Andrew D. Lewis,et al.  Time-Varying Vector Fields and Their Flows , 2014 .

[59]  A. Krener The High Order Maximal Principle and Its Application to Singular Extremals , 1977 .

[60]  J. Craggs Applied Mathematical Sciences , 1973 .

[61]  C. Gasquet,et al.  Fourier analysis and applications , 1998 .

[62]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[63]  Alexandre Grothendieck,et al.  Topological vector spaces , 1973 .

[64]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[65]  Joe Diestel,et al.  The metric theory of tensor products , 2008 .