Locally convex topologies and control theory
暂无分享,去创建一个
[1] Héctor J. Sussmann,et al. Why Real Analyticity is Important in Control Theory , 1990 .
[2] S. Semmes. Topological Vector Spaces , 2003 .
[3] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[4] Matthias Kawski,et al. High-order small-time local controllability , 2017 .
[5] J. Horváth. Topological Vector Spaces and Distributions , 2012 .
[6] P. Michor,et al. Natural operations in differential geometry , 1993 .
[7] M. Barbero-Liñán,et al. Geometric Approach to Pontryagin’s Maximum Principle , 2008, 0805.1169.
[8] H. Sussmann. Orbits of families of vector fields and integrability of distributions , 1973 .
[9] Harold R. Parks,et al. A Primer of Real Analytic Functions , 1992 .
[10] D. Whittaker,et al. A Course in Functional Analysis , 1991, The Mathematical Gazette.
[11] K. Cieliebak,et al. From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds , 2012 .
[12] Andrew D. Lewis,et al. Tautological control systems , 2014, 53rd IEEE Conference on Decision and Control.
[13] Eduardo D. Sontag,et al. Deterministic Finite Dimensional Systems , 1988 .
[14] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[15] D. Segal. ALGEBRA: (Graduate Texts in Mathematics, 73) , 1982 .
[16] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[17] Nicolas Bourbaki,et al. Elements of mathematics , 2004 .
[18] John Fitch,et al. Course notes , 1975, SIGS.
[19] A. Pietsch,et al. A. I. Tulcea and C. I. Tulcea, Topics in the Theory of Lifting. (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48). X + 188 S. Berlin/Heidelberg/New York 1969. Springer‐Verlag. Preis geb. DM 36,‐ . , 1970 .
[20] Richard Bellman,et al. Introduction to the mathematical theory of control processes , 1967 .
[21] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[22] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[23] Kristian Kirsch,et al. Theory Of Ordinary Differential Equations , 2016 .
[24] Anatolii A. Logunov,et al. Analytic functions of several complex variables , 1965 .
[25] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[26] J. Swart,et al. The Metric Theory of Tensor Products (Grothendieck's Résumé Revisited) Part 1: Tensor Norms , 2002 .
[27] Eberhard Freitag,et al. Analytic Functions of Several Complex Variables , 2011 .
[28] H. H. Schaefer,et al. Topological Vector Spaces , 1967 .
[29] Alberto Ibort,et al. A Panorama of Geometrical Optimal Control Theory , 2003 .
[30] M. Chyba,et al. Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.
[31] H. Sussmann,et al. Controllability of nonlinear systems , 1972 .
[32] D. Saunders. The Geometry of Jet Bundles , 1989 .
[33] H. Sussmann. Some optimal control applications of real-analytic stratifications and desingularization , 1998 .
[34] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[35] E. Mangino. (LF) ‐ Spaces and Tensor Products , 1997 .
[36] The space of real-analytic functions has no basis , 2000 .
[37] L. Hörmander,et al. An introduction to complex analysis in several variables , 1973 .
[38] R. Ryan. Introduction to Tensor Products of Banach Spaces , 2002 .
[39] E B Lee,et al. Foundations of optimal control theory , 1967 .
[40] Gianna Stefani,et al. Controllability along a trajectory: a variational approach , 1993 .
[41] R. Gamkrelidze,et al. THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .
[42] P. Michor. Manifolds of differentiable mappings , 1980 .
[43] T. Nagano. Linear differential systems with singularities and an application to transitive Lie algebras , 1966 .
[44] Geometric Aspects of the Maximum Principle and Lifts over a Bundle Map , 2002, math/0212055.
[45] Matthias Kawski. High-order small-time local controllability , 2017 .
[46] J. Coron. Linearized Control Systems and Applications to Smooth Stabilization , 1994 .
[47] Hans Jarchow,et al. Locally convex spaces , 1981 .
[48] R. V. Gamkrelidze,et al. Principles of optimal control theory , 1977 .
[49] William H. Ruckle,et al. Nuclear Locally Convex Spaces , 1972 .
[50] John L. Casti. Introduction to the Mathematical Theory of Control Processes, Volume I: Linear Equations and Quadratic Criteria, Volume II: Nonlinear Processes , 1978, IEEE Transactions on Systems, Man, and Cybernetics.
[51] J. C. P. Bus,et al. The Lagrange multiplier rule on manifolds and optimal control of nonlinear systems , 1982 .
[52] Paweł Domański,et al. Notes on real analytic functions and classical operators , 2012 .
[53] A. Deitmar,et al. Strong vector valued integrals , 2011, 1102.1246.
[54] Klaus Fritzsche,et al. From holomorphic functions to complex manifolds , 2002 .
[55] Eduardo Sontag. Universal nonsingular controls , 1993 .
[56] H. Fédérer. Geometric Measure Theory , 1969 .
[57] D. Vogt. A Fundamental System of Seminorms for $A(K)$ , 2013, 1309.6292.
[58] Andrew D. Lewis,et al. Time-Varying Vector Fields and Their Flows , 2014 .
[59] A. Krener. The High Order Maximal Principle and Its Application to Singular Extremals , 1977 .
[60] J. Craggs. Applied Mathematical Sciences , 1973 .
[61] C. Gasquet,et al. Fourier analysis and applications , 1998 .
[62] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[63] Alexandre Grothendieck,et al. Topological vector spaces , 1973 .
[64] K. Hoffmann,et al. Optimal Control of Partial Differential Equations , 1991 .
[65] Joe Diestel,et al. The metric theory of tensor products , 2008 .