On the solution sets of differential inclusions and the periodic problem in Banach spaces

Abstract In this paper, the topological structure of the solution set of a constrained semilinear differential inclusion in a Banach space E is studied. It is shown that the set of all mild solutions, with values in a closed and, in general, thin subset D ⊂ E , is an R δ -set provided natural boundary conditions and appropriate geometrical assumptions on D (which hold, e.g. when D is convex) are satisfied. Applications to the periodic problem and to the existence of equilibria are given.

[1]  A. Bressan,et al.  On nonconvex perturbations of maximal monotone differential inclusions , 1994 .

[2]  L. Górniewicz,et al.  Topological structure of solution sets to multi-valued asymptotic problems. , 2000 .

[3]  Jan J. Dijkstra,et al.  Infinite-dimensional topology , 2002 .

[4]  Aleksander Ćwiszewski,et al.  Equilibria of set-valued maps: a variational approach , 2002 .

[5]  W. Kryszewski Graph-approximation of set-valued maps on noncompact domains , 1998 .

[6]  Tzanko Donchev Semicontinuous differential inclusions , 1999 .

[7]  J. Lasry,et al.  Periodic solutions of functional differential inclusions and fixed points of σ-selectionable correspondences , 1983 .

[8]  J. Diestel Remarks on Weak Compactness in L1(μ,X) , 1977, Glasgow Mathematical Journal.

[9]  Jan Prüss,et al.  Periodic solutions of semilinear evolution equations , 1979 .

[10]  P. Zecca,et al.  On some properties of dissipative functional differential inclusions in a Banach space , 2000 .

[11]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[12]  Shouchuan Hu,et al.  On the Topological Regularity of the Solution Set of Differential Inclusions with Constraints , 1994 .

[13]  A. Ülger Weak compactness in L1(μ, X) , 1991 .

[14]  R. Nussbaum The fixed point index for local condensing maps , 1971 .

[15]  W. Petryshyn,et al.  A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings , 1974 .

[16]  Robert H. Martin,et al.  Nonlinear operators and differential equations in Banach spaces , 1976 .

[17]  I. I. Vrabie,et al.  Compactness Methods for Nonlinear Evolutions , 1995 .

[18]  Représentations lisses de sous-ensembles épi-lipschitziens de ℝn , 1997 .

[19]  The periodic problem for semilinear differential inclusions in Banach spaces , 1998 .

[20]  R. Bader,et al.  On the Solution Sets of Constrained Differential Inclusions with Applications , 2001 .

[21]  J. Kurzweil,et al.  On conditions on right hand sides of differential relations , 1977 .

[22]  N. Aronszajn,et al.  Le Correspondant Topologique De L'Unicite Dans La Theorie Des Equations Differentielles , 1942 .

[23]  K. Deimling Multivalued Differential Equations , 1992 .

[24]  I. I. Vrabie,et al.  Some new viability results for semilinear differential inclusions , 1997 .

[25]  Lech Górniewicz,et al.  Topological approach to differential inclusions , 1995 .

[26]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[27]  V. Lakshmikantham,et al.  Nonlinear differential equations in abstract spaces , 1981 .

[28]  H. Ben-el-Mechaiekh,et al.  EQUILIBRIA OF SET-VALUED MAPS ON NONCONVEX DOMAINS , 1997 .

[29]  D. M. Hyman On decreasing sequences of compact absolute retracts , 1969 .

[30]  Lech Górniewicz,et al.  Topological structure of solution sets: current results , 2000 .

[31]  K. Deimling Periodic solutions of differential equations in Banach spaces , 1978 .

[32]  Dieter Bothe,et al.  Multivalued perturbations ofm-accretive differential inclusions , 1998 .

[33]  A. Rodkina,et al.  Measures of noncompactness and condensing operators , 1992 .

[34]  L. Górniewicz Homological methods in fixed-point theory of multi-valued maps , 1976 .

[35]  R. Rockafellar,et al.  Clarke's tangent cones and the boundaries of closed sets in Rn , 1979 .

[36]  Slawomir Plaskacz,et al.  Periodic solutions of differential inclusions on compact subsets of Rn , 1990 .

[37]  K. Deimling Nonlinear functional analysis , 1985 .

[38]  L. Górniewicz,et al.  Acyclicity of solution sets to functional inclusions , 2002 .

[39]  Fixed point theorems for various classes of 1-set-contractive and 1-ball-contractive mappings in Banach spaces , 1973 .

[40]  W. Schachermayer,et al.  On weak compactness in , 1993 .