First Catalog of Strong Lens Candidates in the COSMOS Field

We present the first catalog of 67 strong galaxy-galaxy lens candidates discovered in the 1.64 deg2 Hubble Space Telescope COSMOS survey. Twenty of these systems display multiple images or strongly curved large arcs. Our initial search is performed by visual inspection of the data and is restricted, for practical considerations, to massive early-type lens galaxies with arcs found at radii smaller than ~5″. Simple mass models are constructed for the best lens candidates, and our results are compared to the strong lensing catalogs of the SLACS survey and the CASTLES database. These new strong galaxy-galaxy lensing systems constitute a valuable sample to study the mass distribution of early-type galaxies and their associated dark matter halos. We further expect this sample to play an important role in the testing of software algorithms designed to automatically search for strong gravitational lenses. From our analysis a robust lower limit is derived for the expected occurrence of strong galaxy-galaxy systems in current and future space-based wide-field imaging surveys. We expect that such surveys should uncover a large number of strong lensing systems (more than 10 systems per square degree), which will allow for a detailed statistical analysis of galaxy properties and will likely lead to constraints on models of gravitational structure formation and cosmology.

[1]  Casey S. Peters,et al.  A Time Delay for the Cluster-lensed Quasar SDSS J1004+4112 , 2007 .

[2]  J. Kneib,et al.  A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.

[3]  J. Read,et al.  Radial Density Profiles of Time-Delay Lensing Galaxies , 2007, 0704.3267.

[4]  D. Schiminovich,et al.  The First Release COSMOS Optical and Near-IR Data and Catalog , 2007, 0704.2430.

[5]  P. Schneider,et al.  Strong-lensing optical depths in a ΛCDM universe – II. The influence of the stellar mass in galaxies , 2007, astro-ph/0703803.

[6]  D. Calzetti,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007, astro-ph/0703095.

[7]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[8]  R. Ellis,et al.  Dark matter maps reveal cosmic scaffolding , 2007, Nature.

[9]  P. Hall,et al.  A Systematic Search for High Surface Brightness Giant Arcs in a Sloan Digital Sky Survey Cluster Sample , 2007, astro-ph/0701383.

[10]  D. Thompson,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field. III. Optical Identification and Multiwavelength Properties of a Large Sample of X-Ray-Selected Sources , 2006, astro-ph/0612358.

[11]  J. Trump,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field: Statistical Properties of Clusters of Galaxies , 2006, astro-ph/0612360.

[12]  D. Thompson,et al.  Photometric Redshifts of Galaxies in COSMOS , 2006, astro-ph/0612344.

[13]  Caltech,et al.  The VLA-COSMOS Survey. II. Source Catalog of the Large Project , 2006, astro-ph/0612314.

[14]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[15]  K. Chae Cosmological Parameters from the SDSS DR5 Velocity Dispersion Function of Early-Type Galaxies through Radio-selected Lens Statistics , 2006, astro-ph/0611898.

[16]  Gepi,et al.  The CFHTLS strong lensing legacy survey - I. Survey overview and T0002 release sample , 2006, astro-ph/0610362.

[17]  Huan Lin,et al.  A NEW SURVEY FOR GIANT ARCS , 2006, astro-ph/0610061.

[18]  G. Seidel,et al.  Arcfinder: an algorithm for the automatic detection of gravitational arcs , 2006, astro-ph/0607547.

[19]  A. Hopkins,et al.  A Strong-Lens Survey in AEGIS: The Influence of Large-Scale Structure , 2006, astro-ph/0607239.

[20]  M. Kitzbichler,et al.  Strong lensing statistics in large, z 0.2 surveys: bias in the lens galaxy population , 2006, astro-ph/0607032.

[21]  Belgium,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses V. The time delay in SDSS J1650+4251 from two seasons of monitoring , 2006, astro-ph/0606317.

[22]  J. Trump,et al.  Magellan Spectroscopy of AGN Candidates in the COSMOS Field , 2006, astro-ph/0606016.

[23]  S. Mao,et al.  Constraints on the velocity profiles of galaxies from strong lensing statistics and semi-analytical modelling of galaxy formation , 2006, astro-ph/0605405.

[24]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[25]  A. Bolton,et al.  The Sloan Lens ACS Survey. II. Stellar Populations and Internal Structure of Early-Type Lens Galaxies , 2005, astro-ph/0512044.

[26]  UCLA,et al.  The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.

[27]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[28]  B. McLeod,et al.  The Time Delays of Gravitational Lens HE 0435–1223: An Early-Type Galaxy with a Rising Rotation Curve , 2005, astro-ph/0508070.

[29]  F. Courbin,et al.  An optical time delay for the double gravitational lens system FBQ 0951+2635 , 2004, astro-ph/0409444.

[30]  J. Wambsganss,et al.  Gravitational Lensing in a Concordance ΛCDM Universe: The Importance of Secondary Matter along the Line of Sight , 2004, astro-ph/0405147.

[31]  L. Moustakas,et al.  Strong Gravitational Lens Candidates in the GOODS ACS Fields , 2003, astro-ph/0309060.

[32]  E. Ofek,et al.  Time-Delay Measurement of the Lensed Quasar HE 1104–1805 , 2003, astro-ph/0305200.

[33]  Stephan Aune,et al.  MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera , 2003, SPIE Astronomical Telescopes + Instrumentation.

[34]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[35]  C. Fassnacht,et al.  A Determination of H0 with the CLASS Gravitational Lens B1608+656. III. A Significant Improvement in the Precision of the Time Delay Measurements , 2002, astro-ph/0208420.

[36]  A. A. Kaas,et al.  Time delay and lens redshift for the doubly imaged BAL quasar SBS 1520+530 ?;?? , 2002, astro-ph/0206084.

[37]  A. A. Kaas,et al.  The Time Delay of the Quadruple Quasar RX J0911.4+0551 , 2002, astro-ph/0205124.

[38]  U. Seljak,et al.  Virial masses of galactic haloes from galaxy–galaxy lensing: theoretical modelling and application to Sloan Digital Sky Survey data , 2002, astro-ph/0201448.

[39]  G. Meylan,et al.  An optical time-delay for the lensed BAL quasar HE 2149-2745 , 2001, astro-ph/0112225.

[40]  C. B. Moore,et al.  Further Investigation of the Time Delay, Magnification Ratios, and Variability in the Gravitational Lens 0218+357 , 2000, astro-ph/0010049.

[41]  D. Rusin,et al.  Constraints on the Inner Mass Profiles of Lensing Galaxies from Missing Odd Images , 2000, astro-ph/0009079.

[42]  P. Magain,et al.  An Optical Time Delay Estimate for the Double Gravitational Lens System B1600+434 , 2000, astro-ph/0007136.

[43]  K. Ratnatunga,et al.  The Top 10 List of Gravitational Lens Candidates from the HUBBLE SPACE TELESCOPE Medium Deep Survey , 1999, astro-ph/9902100.

[44]  J. Lehár,et al.  The Castles Project , 1998, astro-ph/9902131.

[45]  L. Simard,et al.  Quantitative Morphology of Galaxies in the Hubble Deep Field , 1998, astro-ph/9807223.

[46]  P. Wilkinson,et al.  Interferometer phase calibration sources — II. The region 0° ≤ δB1950≤ +20° , 1998 .

[47]  Rennan Barkana,et al.  Analysis of Time Delays in the Gravitational Lens PG 1115+080 , 1997, astro-ph/9701068.

[48]  I. Smail,et al.  Hubble Space Telescope Observations of the Lensing Cluster Abell 2218 , 1995, astro-ph/9511015.

[49]  C. Kochanek GRAVITATIONAL LENSES AND THE STRUCTURE OF GALAXIES , 1995, astro-ph/9510075.

[50]  A. G. de Bruyn,et al.  1608+656: A Quadruple-Lens System Found in the CLASS Gravitational Lens Survey , 1995 .

[51]  R. Blandford,et al.  1600+434 : a new gravitational lens system , 1995 .

[52]  J. Lehár,et al.  Optical rings: a large number of gravitational lenses? , 1992 .

[53]  P. Wilkinson,et al.  Interferometer phase calibration sources – I. The region $35^{\circ} \leq \delta \leq 75^{\circ} $ , 1992 .

[54]  M. Fukugita,et al.  Gravitational lensing frequencies: galaxy cross-sections and selection effects , 1991 .

[55]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .

[56]  P. Natarajan The shapes of galaxies and their dark halos : New Haven, Connecticut, USA, 28-30 May 2001 , 2002 .

[57]  British Ornithologists,et al.  Bulletin of the , 1999 .

[58]  Howard A. Bushouse,et al.  Astronomical Data Analysis Software and Systems VII , 1998 .

[59]  C. Kochanek,et al.  Astrophysical Applications of Gravitational Lensing , 1996 .