Fourier-based optimal excitation trajectories for the dynamic identification of robots

This paper describes a new approach to the parameterization of robot excitation trajectories for optimal robot identification. The trajectory parameterization is based on a combined Fourier series and polynomial functions. The coefficients of the Fourier series are optimized for minimal sensitivity of the identification to measurement disturbances, which is measured as the d-optimality criterion, taking into account motion constraints in joint and Cartesian space. This parameterization satisfies both the guarantees of convergence by adding terms and the matching of the boundary conditions. Application of the method for the identification of the CRS A465 industrial robot proves the validity of the proposed approach.

[1]  Jan Swevers,et al.  Maximum Likelihood Identification of a Dynamic Robot Model: Implementation Issues , 2002, Int. J. Robotics Res..

[2]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[3]  R. G. Fenton,et al.  Application of the Weighted Least Squares Parameter Estimation Method to the Robot Calibration , 1994 .

[4]  Jan Swevers,et al.  Experimental robot identification using optimized periodic trajectories , 1994 .

[5]  Guangjun Liu,et al.  A base force/torque sensor approach to robot manipulator inertial parameter estimation , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[6]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[9]  C. S. G. Lee,et al.  Robotics: Control, Sensing, Vision, and Intelligence , 1987 .

[10]  Maxime Gautier,et al.  Identification of Robots Dynamics , 1986 .

[11]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[12]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..