UBC-UPC: Sequential SRL Using Selectional Preferences. An approach with Maximum Entropy Markov Models

We present a sequential Semantic Role Labeling system that describes the tagging problem as a Maximum Entropy Markov Model. The system uses full syntactic information to select BIO-tokens from input data, and classifies them sequentially using state-of-the-art features, with the addition of Selectional Preference features. The system presented achieves competitive performance in the CoNLL-2005 shared task dataset and it ranks first in the SRL subtask of the Semeval-2007 task 17.