The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations.

[1]  Jessica Cohen,et al.  The development and generality of self -control , 2009 .

[2]  David C. Glahn,et al.  Neuroinformatics Database (NiDB) – A Modular, Portable Database for the Storage, Analysis, and Sharing of Neuroimaging Data , 2013, Neuroinformatics.

[3]  Han Zhong,et al.  Developing a Brain Informatics Provenance Model , 2013, Brain and Health Informatics.

[4]  C. M. Sperberg-McQueen,et al.  Extensible Markup Language (XML) , 1997, World Wide Web J..

[5]  David B. Keator,et al.  Federated Web-accessible Clinical Data Management within an Extensible NeuroImaging Database , 2010, Neuroinformatics.

[6]  Piotr J. Durka,et al.  Neuroinformatics , 2011, Bio Algorithms Med Syst..

[7]  Clemente Izurieta,et al.  Comparison of JSON and XML Data Interchange Formats: A Case Study , 2009, CAINE.

[8]  Oluwasanmi Koyejo,et al.  Toward open sharing of task-based fMRI data: the OpenfMRI project , 2013, Front. Neuroinform..

[9]  Anne E. Trefethen,et al.  Toward interoperable bioscience data , 2012, Nature Genetics.

[10]  Kent Robertson Van Horn,et al.  Design and application , 1967 .

[11]  Kilian M. Pohl,et al.  Neuroinformatics Software Applications Supporting Electronic Data Capture, Management, and Sharing for the Neuroimaging Community , 2015, Neuropsychology Review.

[12]  J. Gerring A case study , 2011, Technology and Society.

[13]  Shiro Usui,et al.  Brain and Health Informatics , 2013, Lecture Notes in Computer Science.

[14]  David B. Keator,et al.  A National Human Neuroimaging Collaboratory Enabled by the Biomedical Informatics Research Network (BIRN) , 2008, IEEE Transactions on Information Technology in Biomedicine.

[15]  Krzysztof J. Gorgolewski,et al.  Making Data Sharing Count: A Publication-Based Solution , 2012, Front. Neurosci..

[16]  David B. Keator,et al.  Towards structured sharing of raw and derived neuroimaging data across existing resources , 2012, NeuroImage.

[17]  Rhodri Cusack,et al.  Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML , 2015, Front. Neuroinform..

[18]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[19]  James Kozloski,et al.  Self-referential forces are sufficient to explain different dendritic morphologies , 2013, Front. Neuroinform..

[20]  Ian Foster,et al.  The First Provenance Challenge , 2008 .

[21]  Arthur W. Toga,et al.  Is it time to re-prioritize neuroimaging databases and digital repositories? , 2009, NeuroImage.

[22]  A. Rokem,et al.  Data management to support reproducible research , 2015, 1502.06900.

[23]  Benjamin Thyreau,et al.  PyXNAT: XNAT in Python , 2012, Front. Neuroinform..

[24]  Jessica A. Turner,et al.  COINS: An Innovative Informatics and Neuroimaging Tool Suite Built for Large Heterogeneous Datasets , 2011, Front. Neuroinform..

[25]  Yogesh L. Simmhan,et al.  Special Issue: The First Provenance Challenge , 2008, Concurr. Comput. Pract. Exp..

[26]  Satrajit S. Ghosh,et al.  The Brain Imaging Data Structure, a new format for organizing and describing outputs of neuroimaging experiments , 2016, bioRxiv.

[27]  Jochen Ditterich,et al.  Splash: A Software Tool for Stereotactic Planning of Recording Chamber Placement and Electrode Trajectories , 2011, Front. Neuroinform..

[28]  Alexander Huk,et al.  PLDAPS: A Hardware Architecture and Software Toolbox for Neurophysiology Requiring Complex Visual Stimuli and Online Behavioral Control , 2012, Front. Neuroinform..

[29]  Arthur W. Toga,et al.  Provenance in neuroimaging , 2008, NeuroImage.

[30]  Jessica A. Turner,et al.  The Cognitive Paradigm Ontology: Design and Application , 2011, Neuroinformatics.

[31]  David B. Keator,et al.  XCEDE: An Extensible Schema for Biomedical Data , 2011, Neuroinformatics.

[32]  Kerri Smith,et al.  Brain imaging: fMRI 2.0 , 2012, Nature.

[33]  Alan C. Evans,et al.  LORIS: a web-based data management system for multi-center studies , 2012, Front. Neuroinform..

[34]  Aniket Kittur,et al.  The Cognitive Atlas: Toward a Knowledge Foundation for Cognitive Neuroscience , 2011, Front. Neuroinform..

[35]  Daniel S. Marcus,et al.  The extensible neuroimaging archive toolkit , 2007, Neuroinformatics.

[36]  David B. Keator,et al.  A general XML schema and SPM toolbox for storage of neuro-imaging results and anatomical labels , 2007, Neuroinformatics.