A Hybrid Approach for Solving Dynamic Bi-level Optimization Problems

Several real-life decision scenarios are hierarchical, which are commonly modeled as bi-level optimization problems (BOPs). As other decision scenarios, these problems can be dynamic, that is, some elements of their mathematical model can change over time. This kind of uncertainty imposes an extra level of complexity on the model, since the algorithm needs to find the best bi-level solution over time. Despite the importance of studying these problems, the literature reflects just a few works on dynamic bi-level optimization problems (DBOPs). In this context, this work addresses the solution of DBOPs from the viewpoint of metaheuristic methods. Our hypothesis is that, by hybridizing successful solving approaches from both bi-level and dynamic optimization fields, an effective method for DBOPs can be obtained. In this regard, we propose a hybrid method that combines a coevolutionary approach and a self-adaptive, multipopulation algorithm. Experimental results assert our hypothesis, specially for certain information exchange mechanisms.

[1]  Andries Petrus Engelbrecht,et al.  Using Competitive Population Evaluation in a differential evolution algorithm for dynamic environments , 2012, Eur. J. Oper. Res..

[2]  Carlos Cruz,et al.  Optimization in dynamic environments: a survey on problems, methods and measures , 2011, Soft Comput..

[3]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[4]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[5]  Carlos Cruz Corona,et al.  Self-adaptive, multipopulation differential evolution in dynamic environments , 2013, Soft Comput..

[6]  Zhiping Chen,et al.  Dynamic portfolio optimization under multi-factor model in stochastic markets , 2012, OR Spectrum.

[7]  Dazhi Sun,et al.  Bi‐level Programming Formulation and Heuristic Solution Approach for Dynamic Traffic Signal Optimization , 2006, Comput. Aided Civ. Infrastructure Eng..

[8]  Xin Yao,et al.  Benchmark Generator for CEC'2009 Competition on Dynamic Optimization , 2008 .

[9]  Carlos Cruz Corona,et al.  Self-adaptation in dynamic environments - a survey and open issues , 2016, Int. J. Bio Inspired Comput..

[10]  Hans-Georg Beyer,et al.  Self-Adaptation in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[11]  Rosa G. González-Ramírez,et al.  A bi-level optimization model for aid distribution after the occurrence of a disaster , 2015 .

[12]  Carlos Cruz Corona,et al.  A Software Tool for Assisting Experimentation in Dynamic Environments , 2015, Appl. Comput. Intell. Soft Comput..

[13]  Enrique Alba,et al.  Metaheuristics for Dynamic Optimization , 2012, Metaheuristics for Dynamic Optimization.

[14]  Robert G. Jeroslow,et al.  The polynomial hierarchy and a simple model for competitive analysis , 1985, Math. Program..

[15]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[16]  Kalyanmoy Deb,et al.  Test Problem Construction for Single-Objective Bilevel Optimization , 2014, Evolutionary Computation.

[17]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[18]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[19]  Rajkumar Roy,et al.  Bi-level optimisation using genetic algorithm , 2002, Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002).

[20]  Arnaud Liefooghe,et al.  CoBRA: A Coevolutionary Metaheuristic for Bi-level Optimization , 2013 .

[21]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[22]  J. Outrata,et al.  Effective reformulations of the truss topology design problem , 2006 .

[23]  Shengxiang Yang,et al.  Evolutionary dynamic optimization: A survey of the state of the art , 2012, Swarm Evol. Comput..

[24]  Patrice Marcotte,et al.  Bilevel programming: A survey , 2005, 4OR.

[25]  Kalyanmoy Deb,et al.  Finding optimal strategies in a multi-period multi-leader-follower Stackelberg game using an evolutionary algorithm , 2013, Comput. Oper. Res..

[26]  Magdalene Marinaki,et al.  A Bilevel Particle Swarm Optimization Algorithm for Supply Chain Management Problems , 2013 .

[27]  J. Hämäläinen,et al.  Bi-level optimization for a dynamic multiobjective problem , 2012 .

[28]  Ming Yang,et al.  Multi-population methods in unconstrained continuous dynamic environments: The challenges , 2015, Inf. Sci..

[29]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[30]  El-Ghazali Talbi,et al.  A Taxonomy of Metaheuristics for Bi-level Optimization , 2013 .