On low rank-width colorings

We introduce the concept of low rank-width colorings, generalizing the notion of low tree-depth colorings introduced by Nesetřil and Ossona de Mendez in [26]. We say that a class \(\mathcal {C}\) of graphs admits low rank-width colorings if there exist functions \(N:\mathbb {N}\rightarrow \mathbb {N}\) and \(Q:\mathbb {N}\rightarrow \mathbb {N}\) such that for all \(p\in \mathbb {N}\), every graph \(G\in \mathcal {C}\) can be vertex colored with at most N(p) colors such that the union of any \(i\le p\) color classes induces a subgraph of rank-width at most Q(i).

[1]  Robert Ganian,et al.  When Trees Grow Low: Shrubs and Fast MSO1 , 2012, International Symposium on Mathematical Foundations of Computer Science.

[2]  Stephan Kreutzer,et al.  Deciding first-order properties of nowhere dense graphs , 2013, STOC.

[3]  Maria Chudnovsky,et al.  The Erdös–Hajnal Conjecture—A Survey , 2014, J. Graph Theory.

[4]  Vadim V. Lozin,et al.  Minimal Classes of Graphs of Unbounded Clique-width and Well-quasi-ordering , 2015, ArXiv.

[5]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[6]  Michal Pilipczuk,et al.  On low rank-width colorings , 2017, WG.

[7]  Sang-il Oum,et al.  Rank-width: Algorithmic and structural results , 2016, Discret. Appl. Math..

[8]  János Pach,et al.  Erdős–Hajnal Conjecture for Graphs with Bounded VC-Dimension , 2017, Discrete & Computational Geometry.

[9]  Maria Chudnovsky,et al.  Vertex-minors and the Erdős-Hajnal conjecture , 2018, Discret. Math..

[10]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[11]  Bruce A. Reed,et al.  Excluding any graph as a minor allows a low tree-width 2-coloring , 2004, J. Comb. Theory, Ser. B.

[12]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[13]  A. Gyárfás Problems from the world surrounding perfect graphs , 1987 .

[14]  Marthe Bonamy,et al.  The Erdös-Hajnal Conjecture for Long Holes and Antiholes , 2014, SIAM J. Discret. Math..

[15]  Joost Engelfriet,et al.  Clique-Width for 4-Vertex Forbidden Subgraphs , 2006, Theory of Computing Systems.

[16]  Jan Arne Telle,et al.  Boolean-width of graphs , 2009, Theor. Comput. Sci..

[17]  Martin Grohe,et al.  Learnability and Definability in Trees and Similar Structures , 2003, Theory of Computing Systems.

[18]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[19]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[20]  Gábor Rudolf,et al.  Minimal Universal Bipartite Graphs , 2007, Ars Comb..

[21]  Stephan Kreutzer,et al.  Methods for Algorithmic Meta Theorems , 2009, AMS-ASL Joint Special Session.

[22]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[23]  Matt DeVos,et al.  Branch-depth: Generalizing tree-depth of graphs , 2019, Eur. J. Comb..

[24]  Konrad Dabrowski,et al.  Clique-Width of Graph Classes Defined by Two Forbidden Induced Subgraphs , 2015, CIAC.

[25]  Jitender S. Deogun,et al.  On Vertex Ranking for Permutations and Other Graphs , 1994, STACS.

[26]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..

[27]  Georg Gottlob,et al.  Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..

[28]  Alejandro A. Schäffer,et al.  Optimal Node Ranking of Trees in Linear Time , 1989, Inf. Process. Lett..

[29]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[30]  Saharon Shelah,et al.  On the order of countable graphs , 2003, Eur. J. Comb..

[31]  Egon Wanke,et al.  The NLC-width and clique-width for powers of graphs of bounded tree-width , 2009, Discret. Appl. Math..

[32]  Daniel Král,et al.  Classes of graphs with small rank decompositions are X-bounded , 2011, Eur. J. Comb..

[33]  Stephan Kreutzer,et al.  First-Order Interpretations of Bounded Expansion Classes , 2018, ICALP.

[34]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[35]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[36]  Zhi-Zhong Chen,et al.  Map graphs , 1999, JACM.

[37]  Paul D. Seymour,et al.  Caterpillars in Erdős-Hajnal , 2019, J. Comb. Theory, Ser. B.

[38]  Robin Thomas,et al.  Testing first-order properties for subclasses of sparse graphs , 2011, JACM.

[39]  Sang-il Oum Rank-width is less than or equal to branch-width , 2008 .

[40]  Xuding Zhu,et al.  Colouring graphs with bounded generalized colouring number , 2009, Discret. Math..

[41]  Klaus Jansen,et al.  Rankings of Graphs , 1998, SIAM J. Discret. Math..

[42]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[43]  Alex Scott,et al.  A survey of χ ‐boundedness , 2020, J. Graph Theory.

[44]  Bruno Courcelle,et al.  Compact labelings for efficient first-order model-checking , 2011, J. Comb. Optim..

[45]  Hal A. Kierstead,et al.  Orderings on Graphs and Game Coloring Number , 2003, Order.

[46]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory B.