On low rank-width colorings
暂无分享,去创建一个
[1] Robert Ganian,et al. When Trees Grow Low: Shrubs and Fast MSO1 , 2012, International Symposium on Mathematical Foundations of Computer Science.
[2] Stephan Kreutzer,et al. Deciding first-order properties of nowhere dense graphs , 2013, STOC.
[3] Maria Chudnovsky,et al. The Erdös–Hajnal Conjecture—A Survey , 2014, J. Graph Theory.
[4] Vadim V. Lozin,et al. Minimal Classes of Graphs of Unbounded Clique-width and Well-quasi-ordering , 2015, ArXiv.
[5] Jaroslav Nesetril,et al. Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..
[6] Michal Pilipczuk,et al. On low rank-width colorings , 2017, WG.
[7] Sang-il Oum,et al. Rank-width: Algorithmic and structural results , 2016, Discret. Appl. Math..
[8] János Pach,et al. Erdős–Hajnal Conjecture for Graphs with Bounded VC-Dimension , 2017, Discrete & Computational Geometry.
[9] Maria Chudnovsky,et al. Vertex-minors and the Erdős-Hajnal conjecture , 2018, Discret. Math..
[10] Jaroslav Nesetril,et al. Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..
[11] Bruce A. Reed,et al. Excluding any graph as a minor allows a low tree-width 2-coloring , 2004, J. Comb. Theory, Ser. B.
[12] Egon Wanke,et al. k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..
[13] A. Gyárfás. Problems from the world surrounding perfect graphs , 1987 .
[14] Marthe Bonamy,et al. The Erdös-Hajnal Conjecture for Long Holes and Antiholes , 2014, SIAM J. Discret. Math..
[15] Joost Engelfriet,et al. Clique-Width for 4-Vertex Forbidden Subgraphs , 2006, Theory of Computing Systems.
[16] Jan Arne Telle,et al. Boolean-width of graphs , 2009, Theor. Comput. Sci..
[17] Martin Grohe,et al. Learnability and Definability in Trees and Similar Structures , 2003, Theory of Computing Systems.
[18] Bruno Courcelle,et al. Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..
[19] Reinhard Diestel,et al. Graph Theory , 1997 .
[20] Gábor Rudolf,et al. Minimal Universal Bipartite Graphs , 2007, Ars Comb..
[21] Stephan Kreutzer,et al. Methods for Algorithmic Meta Theorems , 2009, AMS-ASL Joint Special Session.
[22] Paul Erdös,et al. Ramsey-type theorems , 1989, Discret. Appl. Math..
[23] Matt DeVos,et al. Branch-depth: Generalizing tree-depth of graphs , 2019, Eur. J. Comb..
[24] Konrad Dabrowski,et al. Clique-Width of Graph Classes Defined by Two Forbidden Induced Subgraphs , 2015, CIAC.
[25] Jitender S. Deogun,et al. On Vertex Ranking for Permutations and Other Graphs , 1994, STACS.
[26] Jaroslav Nesetril,et al. On nowhere dense graphs , 2011, Eur. J. Comb..
[27] Georg Gottlob,et al. Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..
[28] Alejandro A. Schäffer,et al. Optimal Node Ranking of Trees in Linear Time , 1989, Inf. Process. Lett..
[29] Bruno Courcelle,et al. Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[30] Saharon Shelah,et al. On the order of countable graphs , 2003, Eur. J. Comb..
[31] Egon Wanke,et al. The NLC-width and clique-width for powers of graphs of bounded tree-width , 2009, Discret. Appl. Math..
[32] Daniel Král,et al. Classes of graphs with small rank decompositions are X-bounded , 2011, Eur. J. Comb..
[33] Stephan Kreutzer,et al. First-Order Interpretations of Bounded Expansion Classes , 2018, ICALP.
[34] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[35] Paul D. Seymour,et al. Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.
[36] Zhi-Zhong Chen,et al. Map graphs , 1999, JACM.
[37] Paul D. Seymour,et al. Caterpillars in Erdős-Hajnal , 2019, J. Comb. Theory, Ser. B.
[38] Robin Thomas,et al. Testing first-order properties for subclasses of sparse graphs , 2011, JACM.
[39] Sang-il Oum. Rank-width is less than or equal to branch-width , 2008 .
[40] Xuding Zhu,et al. Colouring graphs with bounded generalized colouring number , 2009, Discret. Math..
[41] Klaus Jansen,et al. Rankings of Graphs , 1998, SIAM J. Discret. Math..
[42] Bruno Courcelle,et al. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.
[43] Alex Scott,et al. A survey of χ ‐boundedness , 2020, J. Graph Theory.
[44] Bruno Courcelle,et al. Compact labelings for efficient first-order model-checking , 2011, J. Comb. Optim..
[45] Hal A. Kierstead,et al. Orderings on Graphs and Game Coloring Number , 2003, Order.
[46] Paul D. Seymour,et al. Approximating clique-width and branch-width , 2006, J. Comb. Theory B.