Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell-cell fusion.

[1]  H. Takayanagi,et al.  New insights into osteoclastogenic signaling mechanisms , 2012, Trends in Endocrinology & Metabolism.

[2]  Y. Toyama,et al.  Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells , 2012, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[3]  T. Kodama,et al.  Osteoprotection by semaphorin 3A , 2012, Nature.

[4]  G. Pavlath,et al.  Myoblast fusion: lessons from flies and mice , 2012, Development.

[5]  J. Lausen,et al.  Tal1 regulates osteoclast differentiation through suppression of the master regulator of cell fusion DC‐STAMP , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  H. Aburatani,et al.  Epigenetic regulation of osteoclast differentiation: Possible involvement of Jmjd3 in the histone demethylation of Nfatc1 , 2011, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[7]  T. Kodama,et al.  Suppression of bone formation by osteoclastic expression of semaphorin 4D , 2011, Nature Medicine.

[8]  Kosaku Kurata,et al.  Evidence for osteocyte regulation of bone homeostasis through RANKL expression , 2011, Nature Medicine.

[9]  T. Taniguchi,et al.  The role of the BH3-only protein Noxa in bone homeostasis. , 2011, Biochemical and biophysical research communications.

[10]  K. Yamagata,et al.  Non-clustered protocadherin , 2011, Cell adhesion & migration.

[11]  M. Oursler Recent advances in understanding the mechanisms of osteoclast precursor fusion , 2010, Journal of cellular biochemistry.

[12]  T. Kodama,et al.  Ly49Q, an ITIM-bearing NK receptor, positively regulates osteoclast differentiation. , 2010, Biochemical and biophysical research communications.

[13]  T. Kodama,et al.  Blimp1-mediated repression of negative regulators is required for osteoclast differentiation , 2010, Proceedings of the National Academy of Sciences.

[14]  L. Suva,et al.  Tumor-Derived Syndecan-1 Mediates Distal Cross-Talk with Bone that Enhances Osteoclastogenesis , 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[15]  Claus Christiansen,et al.  Denosumab for prevention of fractures in postmenopausal women with osteoporosis. , 2009, The New England journal of medicine.

[16]  H. Aburatani,et al.  Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation , 2009, Nature Medicine.

[17]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[18]  H. Takayanagi Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems , 2007, Nature Reviews Immunology.

[19]  E. Lander,et al.  The Mammalian Epigenome , 2007, Cell.

[20]  Yongwon Choi,et al.  v-ATPase V0 subunit d2–deficient mice exhibit impaired osteoclast fusion and increased bone formation , 2006, Nature Medicine.

[21]  Akira Yamaguchi,et al.  Regulation of osteoclast differentiation and function by the CaMK-CREB pathway , 2006, Nature Medicine.

[22]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[23]  Y. Toyama,et al.  DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells , 2005, The Journal of experimental medicine.

[24]  Hiroshi Takayanagi,et al.  Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. , 2002, Developmental cell.

[25]  T. Yoneda,et al.  The role of cadherin in the generation of multinucleated osteoclasts from mononuclear precursors in murine marrow. , 1995, The Journal of clinical investigation.

[26]  G. Howard,et al.  Ontogeny of peptidylglycine alpha-amidating monooxygenase activity in rapidly mineralizing bone from neonatal mouse. , 1989, Endocrinology.

[27]  M. Masuhara,et al.  Receptor activator of NF-κB ligand-dependent expression of caveolin-1 in osteoclast precursors, and high dependency of osteoclastogenesis on exogenous lipoprotein. , 2012, Bone.

[28]  M. Ishii,et al.  Expression and function of transmembrane-4 superfamily (tetraspanin) proteins in osteoclasts: reciprocal roles of Tspan-5 and NET-6 during osteoclastogenesis. , 2007, Allergology international : official journal of the Japanese Society of Allergology.